Strict Semimonotonicity Property of Linear Transformations on Euclidean Jordan Algebras

被引:14
作者
Tao, J. [1 ]
机构
[1] Loyola Univ Maryland, Dept Math Sci, Baltimore, MD 21210 USA
关键词
Euclidean Jordan algebra; P property; SSM property; Copositiveness; Complementarity problem; R-0; property; Q property; Z property; GUS property; P-PROPERTIES;
D O I
10.1007/s10957-009-9611-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Motivated by the equivalence of the strict semimonotonicity property of the matrix A and the uniqueness of the solution to the linear complementarity problem LCP(A,q) for qaR (+) (n) , we study the strict semimonotonicity (SSM) property of linear transformations on Euclidean Jordan algebras. Specifically, we show that, under the copositive condition, the SSM property is equivalent to the uniqueness of the solution to LCP(L,q) for all q in the symmetric cone K. We give a characterization of the uniqueness of the solution to LCP(L,q) for a Z transformation on the Lorentz cone a"' (+) (n) . We study also a matrix-induced transformation on the Lorentz space a"' (n) .
引用
收藏
页码:575 / 596
页数:22
相关论文
共 18 条
[1]   Second-order cone programming [J].
Alizadeh, F ;
Goldfarb, D .
MATHEMATICAL PROGRAMMING, 2003, 95 (01) :3-51
[2]  
[Anonymous], 2007, Finite-dimensional variational inequalities and complementarity problems
[3]  
Cottle R.W., 1992, The Linear Complementarity Problem
[4]  
Faraut J., 1994, Oxford Mathematical Monographs
[5]   Z-transformations on proper and symmetric cones - Z-transformations [J].
Gowda, M. Seetharama ;
Tao, Jiyuan .
MATHEMATICAL PROGRAMMING, 2009, 117 (1-2) :195-221
[6]   Some global uniqueness and solvability results for linear complementarity problems over symmetric cones [J].
Gowda, M. Seetharama ;
Sznajder, R. .
SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (02) :461-481
[7]   On semidefinite linear complementarity problems [J].
Gowda, MS ;
Song, Y .
MATHEMATICAL PROGRAMMING, 2000, 88 (03) :575-587
[8]  
Gowda MS, 2000, LINEAR ALGEBRA APPL, V320, P131
[9]   Automorphism invariance of P- and GUS-properties of linear transformations on Euclidean Jordan algebras [J].
Gowda, MS ;
Sznajder, R .
MATHEMATICS OF OPERATIONS RESEARCH, 2006, 31 (01) :109-123
[10]   Some P-properties for linear transformations on Euclidean Jordan algebras [J].
Gowda, MS ;
Sznajder, R ;
Tao, J .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 393 :203-232