A comparative study of evolutionary statistical methods for uncertainty reduction in forest fire propagation prediction

被引:6
作者
Laura Tardivo, Maria [1 ,2 ,3 ]
Caymes-Seutari, Paola [1 ,2 ]
Bianchini, German [1 ]
Mendez-Garabetti, Miguel [1 ,2 ]
Cencerrado, Andres [4 ]
Cortes, Ana
机构
[1] Univ Tecnol Nacl, Fac Reg Mendoza, Dept Ingn Sistemas Informac, LICPaD, Cordoba, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
[3] Univ Nacl Rio Cuarto, Dept Comp, Rio Cuarto, Argentina
[4] Univ Autonoma Barcelona, Res Grp HPCA4SE, Barcelona, Spain
来源
INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS 2017) | 2017年 / 108卷
关键词
Forest Fire Prediction; Statistical analysis; Evolutionary Algorithms; Islands model; High Performance Computing; SPREAD PREDICTION; OPTIMIZATION; QUALITY; SYSTEM;
D O I
10.1016/j.procs.2017.05.252
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Predicting the propagation of forest fires is a crucial point to mitigate their effects. Therefore, several computational tools or simulators have been developed to predict the fire propagation. Such tools consider the scenario (topography, vegetation types, fire front situation), and the particular conditions where the fire is evolving (vegetation conditions, meteorological conditions) to predict the fire propagation. However, these parameters are usually difficult to measure or estimate precisely, and there is a high degree of uncertainty in many of them. This uncertainty provokes a certain lack of accuracy in the predictions with the consequent risks. So, it is necessary to apply methods to reduce the uncertainty in the input parameters. This work presents a comparison of ESSIM-EA and ESSIM-DE: two methods to reduce the uncertainty in the input parameters. These methods combine Evolutionary Algorithms, Parallelism and Statistical Analysis to improve the propagation prediction. (C) 2017 The Authors. Published by Elsevier B.V.
引用
收藏
页码:2018 / 2027
页数:10
相关论文
共 13 条
[1]   Enhancing wildland fire prediction on cluster systems applying evolutionary optimization techniques [J].
Abdalhaq, B ;
Cortés, A ;
Margalef, T ;
Luque, E .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2005, 21 (01) :61-67
[2]   Current status and future needs of the BehavePlus Fire Modeling System [J].
Andrews, Patricia L. .
INTERNATIONAL JOURNAL OF WILDLAND FIRE, 2014, 23 (01) :21-33
[3]  
[Anonymous], 2009, METAHEURISTICS DESIG, DOI DOI 10.1002/9780470496916
[4]  
Bevins C.D., 2004, FIRELIB USER MANUAL
[5]   Evolutionary-Statistical System: A parallel method for improving forest fire spread prediction [J].
Bianchini, G. ;
Caymes-Scutari, P. ;
Mendez-Garabetti, M. .
JOURNAL OF COMPUTATIONAL SCIENCE, 2015, 6 :58-66
[6]  
Cencerrado A, 2012, INT J NUMER ANAL MOD, V9, P432
[7]   Dynamic Data-Driven Genetic Algorithm for forest fire spread prediction [J].
Denham, Monica ;
Wendt, Kerstin ;
Bianchini, German ;
Cortes, Ana ;
Margalef, Tomas .
JOURNAL OF COMPUTATIONAL SCIENCE, 2012, 3 (05) :398-404
[8]  
Finney M.A., 2004, FARSITE FIRE AREA SI
[9]  
Mattson T., 2004, PATTERNS PARALLEL PR, P143
[10]   Increase in the quality of the prediction of a computational wildfire behavior method through the improvement of the internal metaheuristic [J].
Mendez-Garabetti, Miguel ;
Bianchini, German ;
Caymes-Scutari, Paola ;
Laura Tardivo, Maria .
FIRE SAFETY JOURNAL, 2016, 82 :49-62