Spatio-Temporal Prediction of Meteorological Time Series Data: An Approach Based on Spatial Bayesian Network (SpaBN)

被引:3
|
作者
Das, Monidipa [1 ]
Ghosh, Soumya K. [1 ]
机构
[1] Indian Inst Technol Kharagpur, Dept Comp Sci & Engn, Kharagpur 721302, W Bengal, India
关键词
Space-time model; Time series prediction; Spatial Bayesian network; Meteorology;
D O I
10.1007/978-3-319-69900-4_78
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a space-time model for prediction of meteorological time series data. The proposed prediction model is based on a spatially extended Bayesian network (SpaBN), which helps to efficiently model the complex spatio-temporal dependency among large number of spatially distributed variables. Validation has been made with respect to prediction of daily temperature, humidity, and precipitation rate around the spatial region of Kolkata, India. Comparative study with the benchmark and state-of-the-art prediction techniques demonstrates the superiority of the proposed spatio-temporal prediction model.
引用
收藏
页码:615 / 622
页数:8
相关论文
共 50 条
  • [1] Spatio-Temporal Interpolated Echo State Network for Meteorological Series Prediction
    Xu, Meiling
    Yang, Yuanzhe
    Han, Min
    Qiu, Tie
    Lin, Hongfei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (06) : 1621 - 1634
  • [2] Space-time Prediction of High Resolution Raster Data: An Approach based on Spatio-temporal Bayesian Network (STBN)
    Das, Monidipa
    Ghosh, Soumya K.
    PROCEEDINGS OF THE 6TH ACM IKDD CODS AND 24TH COMAD, 2019, : 129 - 135
  • [3] FB-STEP: A fuzzy Bayesian network based data-driven framework for spatio-temporal prediction of climatological time series data
    Das, Monidipa
    Ghosh, Soumya K.
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 117 : 211 - 227
  • [4] Earthquake Prediction Based on Spatio-Temporal Data Mining: An LSTM Network Approach
    Wang, Qianlong
    Guo, Yifan
    Yu, Lixing
    Li, Pan
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2020, 8 (01) : 148 - 158
  • [5] A Bayesian Approach for the Multifractal Analysis of Spatio-Temporal Data
    Combrexelle, S.
    Wendt, H.
    Tourneret, J. -Y.
    Altmann, Y.
    McLaughlin, S.
    Abry, P.
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING, (IWSSIP 2016), 2016, : 331 - 334
  • [6] A Traffic Prediction Algorithm Based on Bayesian Spatio-Temporal Model in Cellular Network
    Zhang, Zhen
    Liu, Fangfang
    Zeng, Zhimin
    Zhao, Wen
    2017 INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS (ISWCS), 2017, : 43 - 48
  • [7] A spatio-temporal Bayesian Network approach for deforestation prediction in an Amazon rainforest expansion frontier
    Silva, Alexsandro C. O.
    Fonseca, Leila M. G.
    Korting, Thales S.
    Escada, Maria Isabel S.
    SPATIAL STATISTICS, 2020, 35
  • [8] Workload Characterization of a Time-Series Prediction System for Spatio-Temporal Data
    Jain, Milan
    Ghosh, Sayan
    Nandanoori, Sai Pushpak
    PROCEEDINGS OF THE 19TH ACM INTERNATIONAL CONFERENCE ON COMPUTING FRONTIERS 2022 (CF 2022), 2022, : 159 - 168
  • [9] semBnet: A semantic Bayesian network for multivariate prediction of meteorological time series data
    Das, Monidipa
    Ghosh, Soumya K.
    PATTERN RECOGNITION LETTERS, 2017, 93 : 192 - 201
  • [10] Spatio-temporal attention-based hybrid deep network for time series prediction of industrial process
    Lu, Dong
    Zhou, Xiaofeng
    Li, Shuai
    APPLIED INTELLIGENCE, 2025, 55 (02)