Metal-Level Thermally Conductive yet Soft Graphene Thermal Interface Materials

被引:280
作者
Dai, Wen [1 ,2 ]
Ma, Tengfei [3 ]
Yan, Qingwei [1 ]
Gao, Jingyao [1 ,2 ]
Tan, Xue [1 ,2 ]
Lv, Le [1 ,2 ]
Hou, Hao [1 ]
Wei, Qiuping [4 ]
Yu, Jinhong [1 ,2 ]
Wu, Jianbo [5 ]
Yao, Yagang [6 ,7 ]
Du, Shiyu [8 ]
Sun, Rong [9 ]
Jiang, Nan [1 ,2 ]
Wang, Yan [3 ]
Kong, Jing [10 ]
Wong, Chingping [11 ]
Maruyama, Shigeo [12 ,13 ]
Lin, Cheng-Te [1 ,2 ]
机构
[1] Chinese Acad Sci, NIMTE, Zhejiang Key Lab Marine Mat & Protect Technol, Key Lab Marine Mat & Related Technol, Ningbo 315201, Zhejiang, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Univ Nevada, Dept Mech Engn, Reno, NV 89557 USA
[4] Cent S Univ, Sch Mat Sci & Engn, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
[5] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[6] Nanjing Univ, Jiangsu Key Lab Artificial Funct Mat, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[7] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[8] Chinese Acad Sci, NIMTE, Ningbo 315201, Zhejiang, Peoples R China
[9] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[10] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[11] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[12] Univ Tokyo, Dept Mech Engn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[13] Natl Inst Adv Ind Sci & Technol, Energy Nano Engn Lab, Tsukuba, Ibaraki 3058564, Japan
基金
国家重点研发计划;
关键词
vertically aligned graphene; hierarchical structure; metal-level thermal conductivity; low compressive modulus; thermal interface materials; NANOTUBE-POLYMER NANOCOMPOSITES; CARBON NANOTUBES; EPOXY-RESIN; COMPOSITES; COEFFICIENT; TRANSPORT; EXPANSION; NITRIDE; FILLER; GROWTH;
D O I
10.1021/acsnano.9b05163
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Along with the technology evolution for dense integration of high-power, high-frequency devices in electronics, the accompanying interfacial heat transfer problem leads to urgent demands for advanced thermal interface materials (TIMs) with both high through-plane thermal conductivity and good compressibility. Most metals have satisfactory thermal conductivity but relatively high compressive modulus, and soft silicones are typically thermal insulators (0.3 W m(-1) K-1). Currently, it is a great challenge to develop a soft material with the thermal conductivity up to metal level for TIM application. This study solves this problem by constructing a graphene-based microstructure composed of mainly vertical graphene and a thin cap of horizontal graphene layers on both the top and bottom sides through a mechanical machining process to manipulate the stacked architecture of conventional graphene paper. The resultant graphene monolith has an ultrahigh through-plane thermal conductivity of 143 W m(-1) K-1, exceeding that of many metals, and a low compressive modulus of 0.87 MPa, comparable to that of silicones. In the actual TIM performance measurement, the system cooling efficiency with our graphene monolith as TIM is 3 times as high as that of the state-of-the-art commercial TIM, demonstrating the superior ability to solve the interfacial heat transfer issues in electronic systems.
引用
收藏
页码:11561 / 11571
页数:11
相关论文
共 66 条
[1]   The properties of AlN-filled epoxy molding compounds by the effects of filler size distribution [J].
Bae, JW ;
Kim, W ;
Cho, SH ;
Lee, SH .
JOURNAL OF MATERIALS SCIENCE, 2000, 35 (23) :5907-5913
[2]   Nanowire-filled polymer composites with ultrahigh thermal conductivity [J].
Balachander, Nikhil ;
Seshadri, Indira ;
Mehta, Rutvik J. ;
Schadler, Linda S. ;
Borca-Tasciuc, Theo ;
Keblinski, Pawel ;
Ramanath, Ganpati .
APPLIED PHYSICS LETTERS, 2013, 102 (09)
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]   Dense Vertically Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials [J].
Barako, Michael T. ;
Isaacson, Scott G. ;
Lian, Feifei ;
Pop, Eric ;
Dauskardt, Reinhold H. ;
Goodson, Kenneth E. ;
Tice, Jesse .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (48) :42067-42074
[5]   Copper Nanowire-Filled Soft Elastomer Composites for Applications as Thermal Interface Materials [J].
Bhanushali, Sushrut ;
Ghosh, Prakash Chandra ;
Simon, George P. ;
Cheng, Wenlong .
ADVANCED MATERIALS INTERFACES, 2017, 4 (17)
[6]   Whisker and hillock formation on Sn, Sn-Cu and Sn-Pb electrodeposits [J].
Boettinger, WJ ;
Johnson, CE ;
Bendersky, LA ;
Moon, KW ;
Williams, ME ;
Stafford, GR .
ACTA MATERIALIA, 2005, 53 (19) :5033-5050
[7]   Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition [J].
Cai, Weiwei ;
Moore, Arden L. ;
Zhu, Yanwu ;
Li, Xuesong ;
Chen, Shanshan ;
Shi, Li ;
Ruoff, Rodney S. .
NANO LETTERS, 2010, 10 (05) :1645-1651
[8]   Influence of mechanical strain on the electrical properties of flexible organic thin-film transistors [J].
Chen, Fang-Chung ;
Chen, Tzung-Da ;
Zeng, Bing-Ruei ;
Chung, Ya-Wei .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2011, 26 (03)
[9]   Thermal conductivity of polymer-based composites: Fundamentals and applications [J].
Chen, Hongyu ;
Ginzburg, Valeriy V. ;
Yang, Jian ;
Yang, Yunfeng ;
Liu, Wei ;
Huang, Yan ;
Du, Libo ;
Chen, Bin .
PROGRESS IN POLYMER SCIENCE, 2016, 59 :41-85
[10]   Photopatternable conductive PDMS materials for microfabrication [J].
Cong, Hailin ;
Pan, Tingrui .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (13) :1912-1921