On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients

被引:117
作者
Karlsen, KH
Risebro, NH
机构
[1] Univ Bergen, Dept Math, N-5008 Bergen, Norway
[2] Univ Oslo, Dept Math, N-0316 Oslo, Norway
关键词
degenerate parabolic equation; rough coefficient; entropy solution; uniqueness; stability;
D O I
10.3934/dcds.2003.9.1081
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study nonlinear degenerate parabolic equations where the flux function f(x, t, u) does not depend Lipschitz continuously on the spatial location x. By properly adapting the "doubling of variables" device due to Kruzkov [25] and Carrillo [12], we prove a uniqueness result within the class of entropy solutions for the initial value problem. We also prove a result concerning the continuous dependence on the initial data and the flux function for degenerate parabolic equations with flux function of the form k(x)f(u), where k(x) is a vector-valued function and f(u) is a scalar function.
引用
收藏
页码:1081 / 1104
页数:24
相关论文
共 41 条
[1]  
ALT HW, 1983, MATH Z, V183, P311
[2]  
[Anonymous], 1970, MATH USSR SB
[3]  
BENILAN P, 1995, ANN I H POINCARE-AN, V12, P727
[4]   STRONG SOLUTIONS IN L(1) OF DEGENERATE PARABOLIC EQUATIONS [J].
BENILAN, P ;
GARIEPY, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 119 (02) :473-502
[5]  
BENILAN P, 1995, LECT NOTES PURE APPL, V168, P35
[6]   Kruzkov's estimates for scalar conservation laws revisited [J].
Bouchut, F ;
Perthame, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (07) :2847-2870
[7]  
BREZIS H, 1979, J MATH PURE APPL, V58, P153
[8]   Existence, uniqueness, and stability of generalized solutions of an initial-boundary value problem for a degenerating quasilinear parabolic equation [J].
Burger, R ;
Wendland, WL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 218 (01) :207-239
[9]   On strongly degenerate convection-diffusion problems modeling sedimentation-consolidation processes [J].
Bürger, R ;
Evje, S ;
Karlsen, KH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 247 (02) :517-556
[10]  
Bustos M.C., 1999, Sedimentation and Thickening Phenomenological Foundation and Mathematical Theory, DOI [10.1007/978-94-015-9327-4, DOI 10.1007/978-94-015-9327-4]