Nonnegative solutions for nonlinear elliptic systems

被引:5
作者
Peng, Chaoquan
Yang, Jianfu [1 ]
机构
[1] Jiangxi Normal Univ, Dept Math, Jiangxi 330027, Peoples R China
[2] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
[3] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
existence; nonnegative solution; elliptic system;
D O I
10.1016/j.jmaa.2006.08.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that the semilinear elliptic systems of the form [GRAPHICS] possess at least one nonnegative nontrivial solution pair (u, v) epsilon H-0(1) (Omega) x H-0(1) (Omega), where Omega is a smooth bounded domain in R-N. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:633 / 653
页数:21
相关论文
共 9 条
[1]   Index estimates for strongly indefinite functionals, periodic orbits and homoclinic solutions of first order Hamiltonian systems [J].
Abbondandolo, A ;
Molina, J .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2000, 11 (04) :395-430
[2]  
ABBONDANDOLO A, 2001, J DIFFER EQUATIONS, V6, P1
[3]   A priori bounds and renormalized Morse indices of solutions of an elliptic system [J].
Angenent, SB ;
Van der Vorst, R .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (03) :277-306
[4]  
DEFIGUEIREDO DG, 1994, T AM MATH SOC, V343, P99
[5]  
Gidas B., 1981, COMMUN PART DIFF EQ, V6, P883, DOI 10.1080/03605308108820196
[6]   DIFFERENTIAL-SYSTEMS WITH STRONGLY INDEFINITE VARIATIONAL STRUCTURE [J].
HULSHOF, J ;
VANDERVORST, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 114 (01) :32-58
[7]  
KAVIAN O, 1993, INTRO HTEORIE POINTS
[8]   Spike-layered solutions for an elliptic system with Neumann boundary conditions [J].
Ramos, M ;
Yang, JF .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (08) :3265-3284
[9]  
Willem M., 1996, Minimax theorems, V24