Equilateral dimension of the rectilinear space

被引:15
作者
Koolen, J [1 ]
Laurent, M [1 ]
Schrijver, A [1 ]
机构
[1] Ctr Wiskunde & Informat, NL-1098 SJ Amsterdam, Netherlands
关键词
touching number; rectilinear space; equidistant set; cut metric; design; touching simplices;
D O I
10.1023/A:1008391712305
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It is conjectured that there exist at most 2k equidistant points in the k-dimensional rectilinear space. This conjecture has been verified for k less than or equal to 3; we show here its validity in dimension k = 4. We also discuss a number of related questions. For instance, what is the maximum number of equidistant points lying in the hyperplane: Sigma (k)(i=1) x(i) = 0? If this number would be equal to k, then the above conjecture would follow. We show, however, that this number is greater than or equal to k + 1 for k greater than or equal to 4.
引用
收藏
页码:149 / 164
页数:16
相关论文
共 25 条
[1]  
[Anonymous], 1961, MONATSH MATH
[2]  
[Anonymous], INDAG MATH
[3]   Embedding into Rectilinear Spaces [J].
H. -J. Bandelt ;
V. Chepoi ;
M. Laurent .
Discrete & Computational Geometry, 1998, 19 (4) :595-604
[4]  
BLUMENTHAL L., 1953, THEORY APPL DISTANCE
[5]  
Danzer L., 1962, Math. Z, V79, P95, DOI DOI 10.1007/BF01193107
[6]  
Danzer Ludwig, 1963, P S PURE MATH, VVII, P101
[7]  
DEBRUIJN NG, 1948, INDAG MATH, V10, P421
[8]  
DEZA M, 1997, ALGORITHMS COMBINATO, P15
[9]  
FICHER B, 1994, LECT NOTES STAT, V93, P201
[10]   Covering a symmetric poset by symmetric chains [J].
Fleiner, T .
COMBINATORICA, 1997, 17 (03) :339-344