Polydimensional modelling of dendritic growth and microsegregation in multicomponent alloys

被引:52
作者
Michelic, Sebastian C. [1 ]
Thuswaldner, Joerg M. [2 ]
Bernhard, Christian [1 ]
机构
[1] Univ Min & Met Leoben, Chair Met, Christian Doppler Lab Met Fundamentals Continous, A-8700 Leoben, Austria
[2] Univ Leoben, Chair Math & Stat, A-8700 Leoben, Austria
关键词
Cellular automaton; Microsegregation; Multicomponent solidification; CELLULAR-AUTOMATON MODEL; FRONT TRACKING TECHNIQUE; SOLIDIFICATION MICROSTRUCTURES; MATHEMATICAL-ANALYSIS; GRAIN STRUCTURES; SIMULATION; PREDICTION; CONVECTION; INTERFACE; STABILITY;
D O I
10.1016/j.actamat.2010.01.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Various models for simulating dendritic solidification have been proposed in the past. However, those models based on cellular automata (adopting the virtual front-tracking (VFT) concept) are often only suitable for the consideration of one alloying element. As typical industrial alloys are constituted of numerous alloying elements, the application of these models to practical alloys is therefore rather limited. In order to overcome this drawback, a new, modified VFT model, which allows for the treatment of several alloying elements in the low Peclet number regime, is presented. By a new and effective approach, based on a functional extrapolation of the concentration gradient, we are able to study dendritic growth in multicomponent Fe-C-Si-Mn-P-S alloys. Comparisons with well-established analytical models confirm the correctness of the model; results for free and constrained dendritic growth effectively demonstrate the capabilities of this new model. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2738 / 2751
页数:14
相关论文
共 47 条
[11]   Two-dimensional modelling and experimental study on microsegregation during solidification of an Al-Cu binary alloy [J].
Du, Q. ;
Eskin, D. G. ;
Jacot, A. ;
Katgerman, L. .
ACTA MATERIALIA, 2007, 55 (05) :1523-1532
[12]   A two-dimensional micro segregation model for the description of microstructure formation during solidification in multicomponent alloys: Formulation and behaviour of the model [J].
Du, Q ;
Jacot, A .
ACTA MATERIALIA, 2005, 53 (12) :3479-3493
[13]  
Flemings M.C, 1974, Solidification Processing
[14]   Upgrading CALPHAD to microstructure simulation: the phase-field method [J].
Fries, Suzana G. ;
Boettger, Bemd ;
Eiken, Janin ;
Steinbach, Ingo .
INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2009, 100 (02) :128-134
[15]   A 3D cellular automaton algorithm for the prediction of dendritic grain growth [J].
Gandin, CA ;
Rappaz, M .
ACTA MATERIALIA, 1997, 45 (05) :2187-2195
[16]   A three-dimensional cellular automaton-finite element model for the prediction of solidification grain structures [J].
Gandin, CA ;
Desbiolles, JL ;
Rappaz, M ;
Thévoz, P .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1999, 30 (12) :3153-3165
[17]   Competition between surface energy and elastic anisotropies in the growth of coherent solid-state dendrites [J].
Greenwood, Michael ;
Hoyt, Jeffrey J. ;
Provatas, Nikolas .
ACTA MATERIALIA, 2009, 57 (09) :2613-2623
[18]   Modeling of macrosegregation and solidification grain structures with a coupled Cellular Automaton-Finite Element model [J].
Guillemot, Gildas ;
Gandin, Charles-Andre ;
Combeau, Herve .
ISIJ INTERNATIONAL, 2006, 46 (06) :880-895
[19]   Multiphase solidification in multicomponent alloys. [J].
Hecht, U ;
Gránásy, L ;
Pusztai, T ;
Böttger, B ;
Apel, M ;
Witusiewicz, V ;
Ratke, L ;
De Wilde, J ;
Froyen, L ;
Camel, D ;
Drevet, B ;
Faivre, G ;
Fries, SG ;
Legendre, B ;
Rex, S .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2004, 46 (1-2) :1-49
[20]   A pseudo-front tracking technique for the modelling of solidification microstructures in multi-component alloys [J].
Jacot, A ;
Rappaz, M .
ACTA MATERIALIA, 2002, 50 (08) :1909-1926