Multiscale array antireflective coatings for improving efficiencies of solar cells

被引:14
作者
Li, Yijie [1 ,2 ,3 ]
Zhang, Yaoju [1 ]
Lin, Jie [1 ]
Fang, Chaolong [1 ]
Ke, Yongqi [1 ]
Tao, Hua [1 ]
Wang, Weiji [1 ]
Zhao, Xuesong [1 ]
Li, Zhihong [1 ]
Lin, Zhenkun [2 ,3 ]
机构
[1] Wenzhou Univ, Coll Phys & Elect Informat Engn, Wenzhou 325035, Zhejiang, Peoples R China
[2] Wenzhou Med Univ, Affiliated Hosp 2, Ctr Sci Res, Wenzhou 325027, Zhejiang, Peoples R China
[3] Wenzhou Med Univ, Yuying Childrens Hosp, Wenzhou 325027, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
Multiscale array structure; Antireflective coating; Photovoltaic conversion efficiency; Nanowrinkle; BROAD-BAND; OMNIDIRECTIONAL ANTIREFLECTION; PHOTOVOLTAIC APPLICATIONS; SILICON-WAFERS; LOW-COST; LAYER; FILM; PERFORMANCE; ABSORPTION; PATTERNS;
D O I
10.1016/j.apsusc.2018.08.053
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Multiscale array (MSA) structures are present to reduce the front-side surface reflection loss of solar cells, which consists of nanostructure patterns spanned across the curved surface of micrometer-sized plano-concave cylindrical arrays. The MSAs are fabricated using flexible polydimethylsiloxane (PDMS) polymer by simple template replication together with surface modification technique and characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Optical characterization shows the MSA structure can reduce 3.85% integrated reflectivity of multicrystalline silicon solar cell encapsulated by the flat epoxy resin polymer (ERP) coating. Importantly, the MSA antireflective coating can improve the photovoltaic conversion efficiency of the ERP-encapsulated solar cell from 17.50% to 18.34% and can increase the contact angle of a 2 mu L water droplet on the solar cell surface from 110.5 degrees to 153.1 degrees. These improvements have great significance for commercial Si solar cell devices.
引用
收藏
页码:105 / 111
页数:7
相关论文
共 34 条
[11]   Rational Design and Construction of Well-Organized Macro-Mesoporous SiO2/TiO2 Nanostructure toward Robust High-Performance Self-Cleaning Antireflective Thin Films [J].
Jin, Binbin ;
He, Junhui ;
Yao, Lin ;
Zhang, Yue ;
Li, Jing .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (20) :17467-17476
[12]  
Kelzenberg MD, 2010, NAT MATER, V9, P239, DOI [10.1038/NMAT2635, 10.1038/nmat2635]
[13]   Broadband and omnidirectional highly-transparent coverglasses coated with biomimetic moth-eye nanopatterned polymer films for solar photovoltaic system applications [J].
Leem, Jung Woo ;
Guan, Xiang-Yu ;
Choi, Minkyu ;
Yu, Jae Su .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 134 :45-53
[14]   Antireflective surfaces based on biomimetic nanopillared arrays [J].
Li, Yunfeng ;
Zhang, Junhu ;
Yang, Bai .
NANO TODAY, 2010, 5 (02) :117-127
[15]   Tri-layer antireflection coatings (SiO2/SiO2-TiO2/TiO2) for silicon solar cells using a sol-gel technique [J].
Lien, Shui-Yang ;
Wuu, Dong-Sing ;
Yeh, Wen-Chang ;
Liu, Jun-Chin .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2006, 90 (16) :2710-2719
[16]   A compact and high-power silicon-wafer solar strip-cells-array module integrated with an array concentrator [J].
Lin, Jie ;
Chen, Mengxia ;
Ke, Yongqi ;
Ren, Caiying ;
Xu, Zesheng ;
Zhang, Yaoju ;
Fang, Chaolong .
CHINESE PHYSICS B, 2018, 27 (01)
[17]   Inverted Nanocone-Based Thin Film Photovoltaics with Omnidirectionally Enhanced Performance [J].
Lin, Qingfeng ;
Leung, Siu-Fung ;
Lu, Linfeng ;
Chen, Xiaoyuan ;
Chen, Zhuo ;
Tang, Haoning ;
Su, Wenjun ;
Li, Dongdong ;
Fan, Zhiyong .
ACS NANO, 2014, 8 (06) :6484-6490
[18]   Recent advances in the mechanical durability of superhydrophobic materials [J].
Milionis, Athanasios ;
Loth, Eric ;
Bayer, Ilker S. .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2016, 229 :57-79
[19]  
Miller W.H., 1979, HDB SENSORY PHYSL, VVII/6A, P69
[20]   Rapid fabrication of antireflective pyramid structure on polystyrene film used as protective layer of solar cell [J].
Peng, Yu-Jiang ;
Huang, Han-Xiong ;
Xie, Heng .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 171 :98-105