Analysis of local discontinuous Galerkin method for time-space fractional sine-Gordon equations

被引:17
作者
Ahmadinia, M. [1 ]
Safari, Z. [1 ]
机构
[1] Univ Qom, Fac Sci, Dept Math, Isfahan Old Rd,POB 37185-3766, Qom, Iran
关键词
Local discontinuous Galerkin method; Finite difference method; Fractional partial differential equations; Stability; Error estimate; DIFFUSION EQUATION; ANOMALOUS DIFFUSION; COLLOCATION METHOD; DIFFERENCE SCHEME; ORDER; SUPERCONVERGENCE; SUBDIFFUSION; OPERATORS;
D O I
10.1016/j.apnum.2019.08.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of the present paper is to introduce a numerical method for time-space fractional sine-Gordon equation. The fractional derivative on the space and on the time are considered in the sense of Reimann-Liouville (of order 1 <= beta <= 2) and in the sense of Caputo (of variable order 1 <= alpha (t) <= 2), respectively. The basic idea is to apply local discontinuous Galerkin method in space and a finite difference method in time. The stability and convergence analysis of the method are presented. Numerical results show that the accuracy and reliability of the proposed method for time-space fractional sine-Gordon equation. (C) 2019 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 45 条
[1]   Superconvergence of discontinuous finite element solutions for transient convection-diffusion problems [J].
Adjerid, S ;
Klauser, A .
JOURNAL OF SCIENTIFIC COMPUTING, 2005, 22-3 (01) :5-24
[2]   Analysis of local discontinuous Galerkin method for time-space fractional convection-diffusion equations [J].
Ahmadinia, M. ;
Safari, Z. ;
Fouladi, S. .
BIT NUMERICAL MATHEMATICS, 2018, 58 (03) :533-554
[3]  
[Anonymous], 1989, SOLITONS INTRO
[5]   Superconvergence of the local discontinuous Galerkin method for the sine-Gordon equation in one space dimension [J].
Baccouch, Mahboub .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 333 :292-313
[6]   Superconvergence of the local discontinuous Galerkin method for the sine-Gordon equation on Cartesian grids [J].
Baccouch, Mahboub .
APPLIED NUMERICAL MATHEMATICS, 2017, 113 :124-155
[7]   A compact finite difference scheme for variable order subdiffusion equation [J].
Cao, Jianxiong ;
Qiu, Yanan ;
Song, Guojie .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 48 :140-149
[8]   Fractional diffusion in inhomogeneous media [J].
Chechkin, AV ;
Gorenflo, R ;
Sokolov, IM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (42) :L679-L684
[9]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463
[10]   LOCAL DISCONTINUOUS GALERKIN METHODS FOR FRACTIONAL DIFFUSION EQUATIONS [J].
Deng, W. H. ;
Hesthaven, J. S. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (06) :1845-1864