Multimodal Interaction-Aware Trajectory Prediction in Crowded Space

被引:0
作者
Shi, Xiaodan [1 ]
Shao, Xiaowei [1 ,2 ]
Fan, Zipei [1 ]
Jiang, Renhe [1 ,3 ]
Zhang, Haoran [1 ]
Guo, Zhiling [1 ]
Wu, Guangming [1 ]
Yuan, Wei [1 ]
Shibasaki, Ryosuke [1 ]
机构
[1] Univ Tokyo, Ctr Spatial Informat Sci, Tokyo, Japan
[2] Univ Tokyo, Earth Observat Data Integrat & Fus Res Initiat, Tokyo, Japan
[3] Univ Tokyo, Informat Technol Ctr, Tokyo, Japan
来源
THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE | 2020年 / 34卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate human path forecasting in complex and crowded scenarios is critical for collision avoidance of autonomous driving and social robots navigation. It still remains as a challenging problem because of dynamic human interaction and intrinsic multimodality of human motion. Given the observation, there is a rich set of plausible ways for an agent to walk through the circumstance. To address those issues, we propose a spatio-temporal model that can aggregate the information from socially interacting agents and capture the multimodality of the motion patterns. We use mixture density functions to describe the human path and predict the distribution of future paths with explicit density. To integrate more factors to model interacting people, we further introduce a coordinate transformation to represent the relative motion between people. Extensive experiments over several trajectory prediction benchmarks demonstrate that our method is able to forecast various plausible futures in complex scenarios and achieves state-of-the-art performance.
引用
收藏
页码:11982 / 11989
页数:8
相关论文
共 28 条
[1]   Social LSTM: Human Trajectory Prediction in Crowded Spaces [J].
Alahi, Alexandre ;
Goel, Kratarth ;
Ramanathan, Vignesh ;
Robicquet, Alexandre ;
Li Fei-Fei ;
Savarese, Silvio .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :961-971
[2]   Social Ways: Learning Multi-Modal Distributions of Pedestrian Trajectories with GANs [J].
Amirian, Javad ;
Hayet, Jean-Bernard ;
Pettre, Julien .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, :2964-2972
[3]  
Becker S., 2018, ARXIV180507663
[4]  
Bishop CM, 1994, technical report
[5]  
Donahue J, 2015, PROC CVPR IEEE, P2625, DOI 10.1109/CVPR.2015.7298878
[6]   Soft plus Hardwired attention: An LSTM framework for human trajectory prediction and abnormal event detection [J].
Fernando, Tharindu ;
Denman, Simon ;
Sridharan, Sridha ;
Fookes, Clinton .
NEURAL NETWORKS, 2018, 108 :466-478
[7]  
Fernando Tharindu, 2018, ASIAN C COMPUTER VIS, P314
[8]   Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks [J].
Gupta, Agrim ;
Johnson, Justin ;
Li Fei-Fei ;
Savarese, Silvio ;
Alahi, Alexandre .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :2255-2264
[9]   SOCIAL FORCE MODEL FOR PEDESTRIAN DYNAMICS [J].
HELBING, D ;
MOLNAR, P .
PHYSICAL REVIEW E, 1995, 51 (05) :4282-4286
[10]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]