High stability planar perovskite solar cells with inorganic charge transport layers

被引:1
作者
Wang, Ying [1 ]
Wu, Yuxia [2 ]
Gong, Lihua [3 ]
Zhou, Nanrun [3 ]
Jiang, Minlin [2 ]
机构
[1] Jiujiang Univ, Sch Elect Engn, Jiujiang, Jiangxi, Peoples R China
[2] Nanchang Univ, Inst Adv Study, Nanchang, Jiangxi, Peoples R China
[3] Nanchang Univ, Sch Informat Engn, Nanchang, Jiangxi, Peoples R China
来源
JOURNAL OF PHOTONICS FOR ENERGY | 2018年 / 8卷 / 02期
关键词
perovskite; inorganic; stability; nickel oxide; zinc oxide; HIGH-PERFORMANCE; THIN-FILMS; ELECTRICAL-PROPERTIES; PHYSICAL-PROPERTIES; EFFICIENT; CRYSTALLIZATION; NANOPARTICLES; DEGRADATION; DEPOSITION; CONDUCTIVITY;
D O I
10.1117/1.JPE.8.025503
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Perovskite solar cells based on methylammonium lead halide perovskites (abbreviated as perovskites) maintain great promise for low-cost solar-to-electricity energy conversion, due to the excellent photoelectric properties of perovskites, abundance of raw materials to synthesize perovskites, and the capability to deposit perovskites by a solution process. Significant effort has been taken to deposit high-quality perovskite thin films and, thereafter, to fabricate highly efficient perovskite solar cells. Nevertheless, the degradation of perovskite solar cells greatly limits their chance for mass production and deployment. Here, we present a device structure that can significantly improve the stability of perovskite solar cells using all inorganic charge transport layers. Specifically, solution-processed inorganic thin films, lithium (Li)-doped NiOx (Li:NiOx), and ZnO nanoparticles are used as a hole transport layer and an electron transport layer, respectively. The mechanisms behind the enhanced stability are analyzed. Solutions for further improvement in the stability and the performance of perovskite solar cells are suggested. (C) 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:10
相关论文
共 43 条
[1]   Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies [J].
Bach, U ;
Lupo, D ;
Comte, P ;
Moser, JE ;
Weissörtel, F ;
Salbeck, J ;
Spreitzer, H ;
Grätzel, M .
NATURE, 1998, 395 (6702) :583-585
[2]   Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy [J].
Baxter, Jason B. ;
Schmuttenmaer, Charles A. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (50) :25229-25239
[3]   Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells [J].
Beek, WJE ;
Wienk, MM ;
Kemerink, M ;
Yang, XN ;
Janssen, RAJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (19) :9505-9516
[4]  
Brabec CJ, 2001, ADV FUNCT MATER, V11, P374, DOI 10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO
[5]  
2-W
[6]   Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J].
Burschka, Julian ;
Pellet, Norman ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Gao, Peng ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
NATURE, 2013, 499 (7458) :316-+
[7]   Tuning Perovskite Morphology by Polymer Additive for High Efficiency Solar Cell [J].
Chang, Chun-Yu ;
Chu, Cheng-Ya ;
Huang, Yu-Ching ;
Huang, Chien-Wen ;
Chang, Shuang-Yuan ;
Chen, Chien-An ;
Chao, Chi-Yang ;
Su, Wei-Fang .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (08) :4955-4961
[8]   Efficient and Uniform Planar-Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition [J].
Chen, Chang-Wen ;
Kang, Hao-Wei ;
Hsiao, Sheng-Yi ;
Yang, Po-Fan ;
Chiang, Kai-Ming ;
Lin, Hao-Wu .
ADVANCED MATERIALS, 2014, 26 (38) :6647-6652
[9]   The crystallization and physical properties of Al-doped ZnO nanoparticles [J].
Chen, K. J. ;
Fang, T. H. ;
Hung, F. Y. ;
Ji, L. W. ;
Chang, S. J. ;
Young, S. J. ;
Hsiao, Y. J. .
APPLIED SURFACE SCIENCE, 2008, 254 (18) :5791-5795
[10]   CH3NH3PbI3-Based Planar Solar Cells with Magnetron-Sputtered Nickel Oxide [J].
Cui, Jin ;
Meng, Fanping ;
Zhang, Hua ;
Cao, Kun ;
Yuan, Huailiang ;
Cheng, Yibing ;
Huang, Feng ;
Wang, Mingkui .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (24) :22862-22870