Eliminating the excess CuxSe phase in Cu-rich Cu(In,Ga)Se2 by In2Se3 treatment

被引:9
作者
Peng, Xiao [1 ]
Zhao, Ming [1 ]
Zhuang, Daming [1 ]
Guo, Li [1 ]
Ouyang, Liangqi [1 ]
Sun, Rujun [1 ]
Zhang, Leng [1 ]
Wei, Yaowei [1 ]
Zhan, Shilu [1 ]
Lv, Xunyan [1 ]
Wu, Yixuan [1 ]
Ren, Guoan [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, Beijing 100084, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Solar cell; CuxSe distribution; C-AFM; Methanol bromine etching; Cu-rich chalcopyrite; In2Se3; treatment; SOLAR-CELLS; EFFICIENCY; FILMS; ABSORBERS; GROWTH; MODEL;
D O I
10.1016/j.jallcom.2017.03.142
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The residual CuxSe phase results in shunt leakage paths in Cu-rich Cu(In,Ga)Se-2 (CIGS) which can cause serious degradation in the conversion efficiency. The conductive atom force microscopy(C-AFM) was employed to obtain a direct evidence of shunt leakage paths in the Cu-rich CIGS thin film. The results reveal that CuxSe phase exists not only near the surface but also inside the Cu-rich CIGS thin films. In order to eliminate the residual CuxSe, it is recommended to deposit a thin layer of In2Se3 on Cu-rich CIGS with subsequent annealing treatment In2Se3 treatment for short). The In2Se3 treatment can effectively remove CuxSe phase as well as the shunt leakage paths in Cu-rich CIGS thin films and improve the efficiency of Cu-rich CIGS based solar cells from 1.2% to 9.5%. (C) 2017 Published by Elsevier B.V.
引用
收藏
页码:31 / 35
页数:5
相关论文
共 22 条
[1]   Cu-rich CuInSe2 solar cells with a Cu-poor surface [J].
Aida, Yasuhiro ;
Depredurand, Valerie ;
Larsen, Jes K. ;
Arai, Hitoshi ;
Tanaka, Daisuke ;
Kurihara, Masato ;
Siebentritt, Susanne .
PROGRESS IN PHOTOVOLTAICS, 2015, 23 (06) :754-764
[2]   Comprehensive characterization of Cu-rich Cu(In,Ga)Se2 absorbers prepared by one-step sputtering process [J].
Chen, Chia-Hsiang ;
Lin, Tzu-Ying ;
Hsu, Chia-Hao ;
Wei, Shih-Yuan ;
Lai, Chih-Huang .
THIN SOLID FILMS, 2013, 535 :122-126
[3]   Chalcogenide solar cells fabricated by co-sputtering of quaternary CuIn0.75Ga0.25Se2 and In targets: Another promising sputtering route for mass production [J].
Cheng, Ke ;
Huang, Yuqian ;
Liu, Jingjing ;
Xue, Ming ;
Kuang, Zhongcheng ;
Lu, Zhangbo ;
Wu, Sixin ;
Du, Zuliang .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 684 :237-244
[4]   Cu(In,Ga)Se2 solar cell grown on flexible polymer substrate with efficiency exceeding 17% [J].
Chirila, A. ;
Bloesch, P. ;
Seyrling, S. ;
Uhl, A. ;
Buecheler, S. ;
Pianezzi, F. ;
Fella, C. ;
Perrenoud, J. ;
Kranz, L. ;
Verma, R. ;
Guettler, D. ;
Nishiwaki, S. ;
Romanyuk, Y. E. ;
Bilger, G. ;
Bremaud, D. ;
Tiwari, A. N. .
PROGRESS IN PHOTOVOLTAICS, 2011, 19 (05) :560-564
[5]   Remarkable enhancement of the efficiency of Cu(In,Ga)Se2 solar cells by annealing the (In,Ga)2Se3 precursor layer [J].
Gedi, Sreedevi ;
Sun, Qian ;
Jeon, Chan-Wook .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 659 :255-261
[6]   Acceptor activation energies in epitaxial CuGaSe2 grown by MOVPE [J].
Gerhard, A ;
Harneit, W ;
Brehme, S ;
Bauknecht, A ;
Fiedeler, U ;
Lux-Steiner, MC ;
Siebentritt, S .
THIN SOLID FILMS, 2001, 387 (1-2) :67-70
[7]   Solar cell efficiency tables (version 48) [J].
Green, Martin A. ;
Emery, Keith ;
Hishikawa, Yoshihiro ;
Warta, Wilhelm ;
Dunlop, Ewan D. .
PROGRESS IN PHOTOVOLTAICS, 2016, 24 (07) :905-913
[8]   A study of different selenium sources in the synthesis processes of chalcopyrite semiconductors [J].
Han, Jun-feng ;
Liao, Cheng ;
Gautron, Eric ;
Jiang, Tao ;
Xie, Hua-mu ;
Zhao, Kui ;
Besland, M. -P. .
VACUUM, 2014, 105 :46-51
[9]   Effects of residual copper selenide on CuInGaSe2 solar cells [J].
Hsieh, Tung-Po ;
Chuang, Chia-Chih ;
Wu, Chung-Shin ;
Chang, Jen-Chuan ;
Guo, Jhe-Wei ;
Chen, Wei-Chien .
SOLID-STATE ELECTRONICS, 2011, 56 (01) :175-178
[10]   Effects of heavy alkali elementsin Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6% [J].
Jackson, Philip ;
Wuerz, Roland ;
Hariskos, Dimitrios ;
Lotter, Erwin ;
Witte, Wolfram ;
Powalla, Michael .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2016, 10 (08) :583-586