On Semi(prime) Rings and Algebras with Automorphisms and Generalized Derivations

被引:4
作者
Ali, Shakir [1 ]
Dhara, Basudeb [2 ]
Fahid, Brahim [3 ]
Raza, Mohd Arif [4 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[2] Belda Coll, Dept Math, Belda, Paschim Medinip, India
[3] Mohammed V Univ Rabat, Fac Sci, Ctr Rech Math & Applicat Rabat CeReMAR, Rabat, Morocco
[4] King Abdulaziz Univ, Fac Sci & Arts Rabigh, Dept Math, Jeddah, Saudi Arabia
关键词
(Semi)prime ring; Banach algebra; Automorphism; Derivation; Generalized derivation; LIE IDEALS; CENTRALIZING AUTOMORPHISMS; ENGEL CONDITION; PRIME-RINGS; VALUES;
D O I
10.1007/s41980-019-00231-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring. An additive mapping F : R -> R is called a generalized derivation if there exists a derivation d : R -> R such that F(xy) = F(x)y+xd(y) for all x, y is an element of R. In this paper, first we describe the structure of prime rings involving automorphisms and then characterized generalized derivations on semiprime rings which satisfy certain differential identities. As applications, and apart from proving the other results, many known theorems can be either generalized or deduced. Moreover, we apply our results to functional analysis, and to study the analogous conditions for continuous linear generalized derivations on Banach algebras.
引用
收藏
页码:1805 / 1819
页数:15
相关论文
共 38 条
[1]  
Alahmadi A, 2017, COMMUN MATH APPL, V8, P87
[2]  
Albas E, 2004, ALGEBR COLLOQ, V11, P399
[3]  
Ali S., 2014, J EGYPTIAN MATH SOC, V22, P322, DOI DOI 10.1016/j.joems.2013.11.003
[4]   On rings and algebras with derivations [J].
Ali, Shakir ;
Khan, Mohammad Salahuddin ;
Khan, Abdul Nadim ;
Muthana, Najat M. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (06)
[5]   COMMUTATIVITY OF RINGS INVOLVING ADDITIVE MAPPINGS [J].
Ali, Shakir ;
Ashraf, Mohammad ;
Khan, Mohammad Salahuddin ;
Vukman, Joso .
QUAESTIONES MATHEMATICAE, 2014, 37 (02) :215-229
[6]  
Ashraf M, 2018, MATH REP, V20, P51
[7]  
Beidar K.I., 1996, MONOGRAPHS TXB PURE
[8]   Extended Jacobson density theorem for rings with derivations and automorphisms [J].
Beidar, KI ;
Bresar, M .
ISRAEL JOURNAL OF MATHEMATICS, 2001, 122 (1) :317-346
[9]  
Bell H. E., 1999, QUAEST MATH, V22, P329, DOI [10.1080/16073606.1999.9632085, DOI 10.1080/16073606.1999.9632085]
[10]  
Bell H. E., 2007, Math. J. Okayama Univ, V49, P139