Experimental Assessment of the Practical Oxidative Stability of Lithium Thiophosphate Solid Electrolytes

被引:149
作者
Dewald, Georg F. [1 ,2 ]
Ohno, Saneyuki [1 ,2 ]
Kraft, Marvin A. [1 ,2 ]
Koerver, Raimund [1 ,2 ]
Till, Paul [1 ,2 ]
Vargas-Barbosa, Nella M. [3 ]
Janek, Juergen [1 ,2 ]
Zeier, Wolfgang G. [1 ,2 ]
机构
[1] Justus Liebig Univ Giessen, Inst Phys Chem, Heinrich Buff Ring 17, D-35392 Giessen, Germany
[2] Justus Liebig Univ Giessen, Ctr Mat Res LaMa, Heinrich Buff Ring 16, D-35392 Giessen, Germany
[3] Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany
关键词
ELECTROCHEMICAL STABILITY; STATE BATTERIES; SUPERIONIC CONDUCTORS; INTERPHASE FORMATION; LIQUID ELECTROLYTES; IONIC-CONDUCTIVITY; LI2S-P2S5; GLASSES; HIGH-ENERGY; CATHODE; INTERFACES;
D O I
10.1021/acs.chemmater.9b01550
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
All-solid-state batteries are often expected to replace conventional lithium-ion batteries in the future. However, the practical electrochemical and cycling stability of the best-conducting solid electrolytes, i.e. lithium thiophosphates, is still a critical issue that prevents long-term stable high-energy cells. In this study, we apply a stepwise cyclic voltammetry approach to obtain information on the practical oxidative stability limit of Li10GeP2S12, two different Li2S-P2S5 glasses, as well as the argyrodite Li6PS5Cl solid electrolytes. We employ indium metal and carbon black as the counter and working electrodes, respectively, the latter to increase the interfacial contact area to the electrolyte as compared to the commonly used planar steel electrodes. Using a stepwise increase in the reversal potentials, the onset potential of oxidative decomposition at the electrode-electrolyte interface at 25 degrees C is identified. X-ray photoelectron spectroscopy is used to investigate the oxidation of sulfur(-II) in the thiophosphate polyanions to sulfur(0) as the dominant redox process in all electrolytes tested. Our results suggest that in later cycles the crystalline solid electrolyte itself is not the major redox active phase, but rather that only after the formation of such electrolyte decomposition products is significant redox behavior observed. Indeed, the redox behavior of the decomposition products is an additional contributor to the overall cell capacity of solid-state batteries. The stepwise cyclic voltammetry approach presented here shows that the practical oxidative stability at 25 degrees C of thiophosphate solid electrolytes against carbon is kinetically higher than predicted by thermodynamic calculations and that the decomposition products dominate the redox behavior of cathode composites. The method serves as an efficient guideline for the determination of practical, kinetic stability limits of solid electrolytes with respect to the employed electrode materials.
引用
收藏
页码:8328 / 8337
页数:10
相关论文
共 67 条
[1]   LITHIUM-INDIUM SYSTEM [J].
ALEXANDER, WA ;
CALVERT, LD ;
GAMBLE, RH ;
SCHINZEL, K .
CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE, 1976, 54 (07) :1052-1060
[2]   THE ELECTROCHEMISTRY OF NOBLE-METAL ELECTRODES IN APROTIC ORGANIC-SOLVENTS CONTAINING LITHIUM-SALTS [J].
AURBACH, D ;
DAROUX, M ;
FAGUY, P ;
YEAGER, E .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1991, 297 (01) :225-244
[3]   Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: An XPS study [J].
Auvergniot, Jeremie ;
Cassel, Alice ;
Foix, Dominique ;
Viallet, Virgine ;
Seznec, Vincent ;
Dedryvere, Remi .
SOLID STATE IONICS, 2017, 300 :78-85
[4]   Substrate Selection for Fundamental Studies of Electrocatalysts and Photoelectrodes: Inert Potential Windows in Acidic, Neutral, and Basic Electrolyte [J].
Benck, Jesse D. ;
Pinaud, Blaise A. ;
Gorlin, Yelena ;
Jaramillo, Thomas F. .
PLOS ONE, 2014, 9 (10)
[5]   Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na0.7CoO2 [J].
Bhide, Amrtha ;
Hofmann, Jonas ;
Duerr, Anna Katharina ;
Janek, Juergen ;
Adelhelm, Philipp .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (05) :1987-1998
[6]   SOME ASPECTS OF THE SURFACE-CHEMISTRY OF CARBON-BLACKS AND OTHER CARBONS [J].
BOEHM, HP .
CARBON, 1994, 32 (05) :759-769
[7]   Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application [J].
Boulineau, Sylvain ;
Courty, Matthieu ;
Tarascon, Jean-Marie ;
Viallet, Virginie .
SOLID STATE IONICS, 2012, 221 :1-5
[8]   THE ELECTROCHEMICAL-BEHAVIOR OF TETRAHYDROFURAN AND PROPYLENE CARBONATE WITHOUT ADDED ELECTROLYTE [J].
CAMPBELL, SA ;
BOWES, C ;
MCMILLAN, RS .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1990, 284 (01) :195-204
[9]   A CALORIMETRIC STUDY ON THE THERMAL-DESORPTION OF NAPHTHALENE FROM CXS AND ACTIVATED CARBON [J].
CHANG, CH ;
KLEPPA, OJ .
CARBON, 1981, 19 (03) :187-192
[10]   On the Functionality of Coatings for Cathode Active Materials in Thiophosphate-Based All-Solid-State Batteries [J].
Culver, Sean P. ;
Koerver, Raimund ;
Zeier, Wolfgang G. ;
Janek, Juergen .
ADVANCED ENERGY MATERIALS, 2019, 9 (24)