Thermal Properties of Phase Change Composites Containing Ferric Oxide Nanoparticles

被引:7
作者
Wang, Jifen [1 ]
Xie, Huaqing [1 ]
Li, Yang [1 ]
机构
[1] Shanghai Second Polytech Univ, Sch Urban Dev & Environm Engn, Shanghai 201209, Peoples R China
基金
美国国家科学基金会;
关键词
Iron Oxide; Nanoparticle; Thermal Property; Composite; CARBON NANOTUBES; HEAT-TRANSFER; CONDUCTIVITY; NANOFLUIDS; FLUIDS; PIPE;
D O I
10.1166/jnn.2015.9625
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We prepared a series of homogeneous nanocomposites by suspending Fe2O3 nanoparticles into paraffin wax (PW) matrix. Fe2O3/PW nanocomposites have reduced both solid-solid phase change latent heat capacity (Ls-s) and solid-liquid phase change latent heat capacity (Ls-l) with an increase in the mass fraction of Fe2O3 nanoparticles. There is almost equable solid-solid phase change temperature (Ts-s) between PW and Fe2O3/PW composites, as well as melting temperature (Ts-l). Fe2O3 nanoparticle addition leads to substantial enhancement in the thermal conductivity of Fe2O3/PW and the enhancement ratio increases with the nanoparticle loading. Thermal conductivity of Fe2O3/PW composite with 3.0 wt% nanoparticles is about 0.27 W/(m . K) at 15 degrees C, which close to that of gamma-Al2O3/PW with 5.0 wt% nanoparticles but higher than that of ZnO/PW containing 5.0 wt% nanoparticles. At 60 degrees C, Fe2O3/PW has higher thermal conductivity than gamma-Al2O3/PW and ZnO/PW contained with same fraction of nanoparticles.
引用
收藏
页码:3276 / 3279
页数:4
相关论文
共 18 条
[1]   A review on phase-change materials: Mathematical modeling and simulations [J].
Dutil, Yvan ;
Rousse, Daniel R. ;
Ben Salah, Nizar ;
Lassue, Stephane ;
Zalewski, Laurent .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (01) :112-130
[2]   Thermal conductivity of misaligned short-fiber-reinforced polymer composites [J].
Fu, SY ;
Mai, YW .
JOURNAL OF APPLIED POLYMER SCIENCE, 2003, 88 (06) :1497-1505
[3]   Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe [J].
He, Yurong ;
Jin, Yi ;
Chen, Haisheng ;
Ding, Yulong ;
Cang, Daqiang ;
Lu, Huilin .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2007, 50 (11-12) :2272-2281
[4]   Study of the enhanced thermal conductivity of Fe nanofluids [J].
Hong, TK ;
Yang, HS ;
Choi, CJ .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (06)
[5]   Thermal conductivity of metal-oxide nanofluids: Particle size dependence and effect of laser irradiation [J].
Kim, Sang Hyun ;
Choi, Sun Rock ;
Kim, Dongsik .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2007, 129 (03) :298-307
[6]   Measuring thermal conductivity of fluids containing oxide nanoparticles [J].
Lee, S ;
Choi, SUS ;
Li, S ;
Eastman, JA .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1999, 121 (02) :280-289
[7]   Effect of CuO Nanoparticles in Enhancing the Thermal Conductivities of Monoethylene Glycol and Paraffin Fluids [J].
Moghadassi, A. R. ;
Hosseini, S. Masoud ;
Henneke, Dale E. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (04) :1900-1904
[8]   Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method [J].
Oh, Dong-Wook ;
Jain, Ankur ;
Eaton, John K. ;
Goodson, Kenneth E. ;
Lee, Joon Sik .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2008, 29 (05) :1456-1461
[9]   Lattice thermal conductivity of SiC nanowires [J].
Papanikolaou, N. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (13)
[10]   Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material [J].
Sari, Ahmet ;
Karaipekli, Ali .
APPLIED THERMAL ENGINEERING, 2007, 27 (8-9) :1271-1277