A MULTISCALE SPATIO-TEMPORAL BACKGROUND MODEL FOR MOTION DETECTION

被引:0
作者
Lu, Xiqun [1 ]
机构
[1] Zhejiang Univ, Coll Comp Sci, Hangzhou 310027, Peoples R China
来源
2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2014年
关键词
Multiscale; spatio-temporal; motion detection; background; video surveillance; SUBTRACTION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we present a multiscale background model for motion detection. The proposed approach follows a nonparametric background modeling paradigm: each location in a dynamic scene collects a set of samples on different spatial scales which occurred in the past time and in the neighborhood. The motion measure of a location on a certain spatial scale hinges on how many samples existed in its context set are perceivably different from the sample at the same location of the incoming frame. The propagation of motion measure across scales and the soft updating scheme make this model applicable to dynamic background. We evaluate the proposed multiscale background model on a benchmark dataset which consists of nearly 90,000 frames in 31 videos representing 6 categories, and the experimental results demonstrate that it can efficiently detect motion in low contrast dynamic scenes.
引用
收藏
页码:3268 / 3271
页数:4
相关论文
共 14 条
  • [1] ViBe: A Universal Background Subtraction Algorithm for Video Sequences
    Barnich, Olivier
    Van Droogenbroeck, Marc
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (06) : 1709 - 1724
  • [2] Comparative study of background subtraction algorithms
    Benezeth, Yannick
    Jodoin, Pierre-Marc
    Emile, Bruno
    Laurent, Helene
    Rosenberger, Christophe
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2010, 19 (03)
  • [3] Brutzer S, 2011, PROC CVPR IEEE
  • [4] Davis JW, 2007, INT J COMPUT VISION, V71, P161, DOI 10.1007/sl1263-006-4121-7
  • [5] Background and foreground modeling using nonparametric kernel density estimation for visual surveillance
    Elgammal, A
    Duraiswami, R
    Harwood, D
    Davis, LS
    [J]. PROCEEDINGS OF THE IEEE, 2002, 90 (07) : 1151 - 1163
  • [6] Goyette N., 2012, P CDW
  • [7] Intensity Range Based Background Subtraction for Effective Object Detection
    Hati, Kalyan Kumar
    Sa, Pankaj Kumar
    Majhi, Banshidhar
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2013, 20 (08) : 759 - 762
  • [8] Statistical background subtraction using spatial cues
    Jodoin, Pierre-Marc
    Mignotte, Max
    Konrad, Janusz
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2007, 17 (12) : 1758 - 1763
  • [9] Real-time foreground-background segmentation using codebook model
    Kim, K
    Chalidabhongse, TH
    Harwood, D
    Davis, L
    [J]. REAL-TIME IMAGING, 2005, 11 (03) : 172 - 185
  • [10] A self-organizing approach to background subtraction for visual surveillance applications
    Maddalena, Lucia
    Petrosino, Alfredo
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2008, 17 (07) : 1168 - 1177