Fixed point theorems in metric and uniform spaces via the Knaster-Tarski Principle

被引:8
作者
Jachymski, JR [1 ]
机构
[1] Lodz Tech Univ, Inst Math, PL-90924 Lodz, Poland
关键词
partial ordering; isotone map; the Knaster-Tarski Principle; fixed point; contraction; uniform space; functional inequality; order preserving multifunction; multivalued contraction;
D O I
10.1016/S0362-546X(97)00474-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:225 / 233
页数:9
相关论文
共 28 条
[1]   THEOREM ON PARTIALLY ORDERED SETS, WITH APPLICATIONS TO FIXED POINT THEOREMS [J].
ABIAN, S ;
BROWN, AB .
CANADIAN JOURNAL OF MATHEMATICS, 1961, 13 (01) :78-&
[2]  
Angelov V.G, 1989, J I MATH COMP SCI CA, V2, P22
[3]  
ANGELOV VG, 1987, CZECH MATH J, V37, P19
[4]   ON THE SYNGE EQUATIONS IN A 3-DIMENSIONAL 2-BODY PROBLEM OF CLASSICAL ELECTRODYNAMICS [J].
ANGELOV, VG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 151 (02) :488-511
[5]  
[Anonymous], MATH JAPONICA
[6]   LEMMA OF BISHOP AND PHELPS [J].
BRONDSTED, A .
PACIFIC JOURNAL OF MATHEMATICS, 1974, 55 (02) :335-341
[7]  
Browder F. E., 1975, P SEM FIX POINT THEO, P23
[8]  
COVITZ H, 1979, ISRAEL J MATH, V8, P5
[9]  
Deimling K., 1985, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[10]  
DeMarr R., 1964, COLLOQ MATH-WARSAW, V13, P45, DOI [10.4064/CM-13-1-45-48, DOI 10.4064/CM-13-1-45-48]