On the existence of stationary Ricci solitons

被引:23
作者
Figueras, Pau [1 ]
Wiseman, Toby [2 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, Mile End Rd, London E1 4NS, England
[2] Imperial Coll, Blackett Lab, Theoret Phys Grp, London SW7 2AZ, England
关键词
numerical stationary black holes; Ricci solitons; non-existence; BLACK-HOLES; MASS;
D O I
10.1088/1361-6382/aa764a
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Previously the DeTurck 'trick' has been used to render the stationary Einstein's equation a well posed elliptic system that may be solved numerically by geometric flow or directly. Whilst in the static case for pure gravity with zero or negative cosmological constant there is a simple proof that solving the modified 'harmonic' Einstein's equation leads to a solution of the original Einstein system-i.e. not a Ricci soliton-in the stationary case this argument no longer works. Here we provide a new argument that extends the static result to the case of stationary spacetimes that possess a 't-(empty set) reflection symmetry. Defining a 'soliton charge' from the asymptotic behaviour of the solution, we show that this quantity is always non-positive. Provided asymptotic conditions are chosen such that this charge vanishes, then stationary solitons cannot exist.
引用
收藏
页数:20
相关论文
共 23 条
  • [1] Observation of Gravitational Waves from a Binary Black Hole Merger
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Abernathy, M. R.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Allen, B.
    Allocca, A.
    Altin, P. A.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Arain, M. A.
    Araya, M. C.
    Arceneaux, C. C.
    Areeda, J. S.
    Arnaud, N.
    Arun, K. G.
    Ascenzi, S.
    Ashton, G.
    Ast, M.
    Aston, S. M.
    Astone, P.
    Aufmuth, P.
    Aulbert, C.
    Babak, S.
    Bacon, P.
    Bader, M. K. M.
    Baker, P. T.
    Baldaccini, F.
    Ballardin, G.
    Ballmer, S. W.
    Barayoga, J. C.
    Barclay, S. E.
    Barish, B. C.
    Barker, D.
    Barone, F.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (06)
  • [2] RIGIDITY OF STATIONARY BLACK HOLES WITH SMALL ANGULAR MOMENTUM ON THE HORIZON
    Alexakis, S.
    Ionescu, A. D.
    Klainerman, S.
    [J]. DUKE MATHEMATICAL JOURNAL, 2014, 163 (14) : 2603 - 2615
  • [3] ALEXAKIS S, 2009, ARXIV09021173
  • [4] [Anonymous], ARXIVMATH0211159
  • [5] Bourguignon J.P., 1981, Global differential geometry and global analysis (Berlin, 1979), V838, P42
  • [6] Cao HD, 1996, ELLIPTIC AND PARABOLIC METHODS IN GEOMETRY, P1
  • [7] Conformal field theories in a periodic potential: Results from holography and field theory
    Chesler, Paul
    Lucas, Andrew
    Sachdev, Subir
    [J]. PHYSICAL REVIEW D, 2014, 89 (02):
  • [8] DETURCK DM, 1983, J DIFFER GEOM, V18, P157
  • [9] Stationary Holographic Plasma Quenches and Numerical Methods for Non-Killing Horizons
    Figueras, Pau
    Wiseman, Toby
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (17)
  • [10] Ricci solitons, Ricci flow and strongly coupled CFT in the Schwarzschild Unruh or Boulware vacua
    Figueras, Pau
    Lucietti, James
    Wiseman, Toby
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (21)