Impact of P3HT Regioregularity and Molecular Weight on the Efficiency and Stability of Perovskite Solar Cells

被引:48
作者
Nia, Narges Yaghoobi [1 ]
Bonomo, Matteo [2 ,3 ,4 ]
Zendehdel, Mahmoud [1 ,5 ]
Lamanna, Enrico [1 ]
Desoky, Mohamed M. H. [2 ,3 ,4 ]
Paci, Barbara [6 ]
Zurlo, Francesca [7 ]
Generosi, Amanda [6 ]
Barolo, Claudia [2 ,3 ,4 ,8 ]
Viscardi, Guido [2 ,3 ,4 ]
Quagliotto, Pierluigi [2 ,3 ,4 ]
Di Carlo, Aldo [1 ,6 ]
机构
[1] Univ Roma Tor Vergata, CHOSE Ctr Hybrid & Organ Solar Energy, I-00133 Rome, Italy
[2] Univ Torino, Dipartimento Chim, I-10125 Turin, Italy
[3] Univ Torino, NIS Interdept Ctr, I-10135 Turin, Italy
[4] Univ Torino, INSTM Reference Ctr, I-10135 Turin, Italy
[5] Kimia Solar Co, Kimia Solar Res Inst KSRI, Kashan 8713745868, Iran
[6] CNR, Area Ric Tor Vergata, Ist Struttura Mat CNR ISM, I-00133 Rome, Italy
[7] Univ Roma Tor Vergata, Dept Chem Sci & Technol, I-00133 Rome, Italy
[8] Univ Torino, ICxT Interdept Ctr, I-10153 Turin, Italy
关键词
P3HT; regioregularity; thermal stability; steric hindrance; molecular weight; HOLE-TRANSPORTING MATERIAL; THERMAL-STABILITY; GLASS-TRANSITION; HIGHLY EFFICIENT; RAY-DIFFRACTION; SPIRO-OMETAD; POLY(3-HEXYLTHIOPHENE); FILMS; PERFORMANCE; MORPHOLOGY;
D O I
10.1021/acssuschemeng.0c09015
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The commercialization of perovskite solar cells (PSCs) has seen an important limitation in the instability that afflicts the hole-transporting layer (HTL), namely, spiro-OMeTAD, used in high-efficiency devices. The latter is, in turn, relatively expensive, undermining the sustainability of the device. Its replacement with polymeric scaffolds, such as poly(3hexylthiophene) (P3HT), will solve these issues. In this work, we adopted various sustainable synthetic methods to obtain four different homemade P3HTs with different molecular weights (MWs) and regioregularities (RRs), leading to different structural properties. They are implemented as HTLs in PSCs, and the effect of their properties on the efficiency and thermal stability of devices is thoroughly discussed. The highest efficiency is obtained with the highest MW and low-RR polymer (17.6%) owing to the more sustainable approach, but a very promising value is also reached with a lower-MW but fully regioregular polymer (15%). Finally, large-area devices with an efficiency of 16.7%, fabricated with a high-MW P3HT, show more than 1000 h (T80 = 1108 h) of stability under accelerated thermal stress tests (85 degrees C) out of glovebox while keeping over 85% of the initial efficiency of an unencapsulated device after more than 3000 min under continuous light soaking (AM 1.5G).
引用
收藏
页码:5061 / 5073
页数:13
相关论文
共 50 条
[41]   P3HT/Phthalocyanine Nanocomposites as Efficient Hole-Transporting Materials for Perovskite Solar Cells [J].
Hu, Qikun ;
Rezaee, Ehsan ;
Dong, Qingshun ;
Shan, Haiquan ;
Chen, Qian ;
Wang, Liduo ;
Liu, Bingchen ;
Pan, Jia-Hong ;
Xu, Zong-Xiang .
SOLAR RRL, 2019, 3 (01)
[42]   The Influence of Physical Properties of ZnO Films on the Efficiency of Planar ZnO/Perovskite/P3HT Solar Cell [J].
Qiu, Zhiwen ;
Yuan, Shuai ;
Gong, Haibo ;
Zhang, Hailiang ;
Qiu, Xiaofeng ;
Luo, Ting ;
Cao, Bingqiang .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2017, 100 (01) :176-184
[43]   Optimizing P3HT/PCBM/MWCNT films for increased stability in polymer bulk heterojunction solar cells [J].
Singh, Vinamrita ;
Arora, Swati ;
Arora, Manoj ;
Sharma, Vishal ;
Tandon, R. P. .
PHYSICS LETTERS A, 2014, 378 (41) :3046-3054
[44]   Multidimensional interface engineering with aromatic dicarboxylates for high efficiency and stable dopant-free P3HT perovskite solar cells [J].
Li, Weikui ;
Xu, Hang ;
Wang, Gang ;
Deng, Wenxin ;
Long, Yue ;
Li, Xiuxian ;
Deng, Yuncheng ;
Zhu, Haimao ;
Wang, Chongzhou ;
Xiao, Li ;
Zhong, Zhuqiang .
CHEMICAL ENGINEERING JOURNAL, 2025, 520
[45]   Formation and characterization of one-dimensional ZnS nanowires for ZnS/P3HT hybrid polymer solar cells with improved efficiency [J].
Matras-Postolek, Katarzyna ;
Zaba, Adam ;
Nowak, Elzbieta M. ;
Dabczynski, Pawel ;
Rysz, Jakub ;
Sanetra, Jerzy .
APPLIED SURFACE SCIENCE, 2018, 451 :180-190
[46]   In situ measurement of power conversion efficiency and molecular ordering during thermal annealing in P3HT:PCBM bulk heterojunction solar cells [J].
Treat, Neil D. ;
Shuttle, Chris G. ;
Toney, Michael F. ;
Hawker, Craig J. ;
Chabinyc, Michael L. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (39) :15224-15231
[47]   Revealing the Interfacial Photoreduction of MoO3 with P3HT from the Molecular Weight-Dependent "Burn-In" Degradation of P3HT:PC61BM Solar Cells [J].
Gu, Huimin ;
Yan, Lingpeng ;
Saxena, Sonam ;
Shi, Xueliang ;
Zhang, Xuning ;
Li, Zerui ;
Luo, Qun ;
Zhou, Huiqiong ;
Yang, Yongzhen ;
Liu, Xuguang ;
Wong, Wallace W. H. ;
Ma, Chang-Qi .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (10) :9714-9723
[48]   Perovskite tandem solar cells with improved efficiency and stability [J].
Zhu, Zhengjie ;
Mao, Kaitian ;
Xu, Jixian .
JOURNAL OF ENERGY CHEMISTRY, 2021, 58 :219-232
[49]   Optimization of annealing temperature and the annealing effect on life time and stability of P3HT:PCBM-based organic solar cells [J].
Guney, H. Yuksel ;
Avdan, Zeynep ;
Yetkin, Hazel .
MATERIALS RESEARCH EXPRESS, 2019, 6 (04)
[50]   Correlation of Degradation of P3HT:PCBM And P3HT:ITIC Organic Solar Cells with Changes of their Optical Spectra [J].
Zakhidov, E. A. ;
Zakhidova, M. A. ;
Imomov, M. Kh. ;
Kuvondikov, V. O. ;
Nematov, Sh. K. ;
Saparbaev, A. A. ;
Tazhibaev, I. I. .
JOURNAL OF APPLIED SPECTROSCOPY, 2020, 87 (03) :464-470