Impact of P3HT Regioregularity and Molecular Weight on the Efficiency and Stability of Perovskite Solar Cells

被引:48
作者
Nia, Narges Yaghoobi [1 ]
Bonomo, Matteo [2 ,3 ,4 ]
Zendehdel, Mahmoud [1 ,5 ]
Lamanna, Enrico [1 ]
Desoky, Mohamed M. H. [2 ,3 ,4 ]
Paci, Barbara [6 ]
Zurlo, Francesca [7 ]
Generosi, Amanda [6 ]
Barolo, Claudia [2 ,3 ,4 ,8 ]
Viscardi, Guido [2 ,3 ,4 ]
Quagliotto, Pierluigi [2 ,3 ,4 ]
Di Carlo, Aldo [1 ,6 ]
机构
[1] Univ Roma Tor Vergata, CHOSE Ctr Hybrid & Organ Solar Energy, I-00133 Rome, Italy
[2] Univ Torino, Dipartimento Chim, I-10125 Turin, Italy
[3] Univ Torino, NIS Interdept Ctr, I-10135 Turin, Italy
[4] Univ Torino, INSTM Reference Ctr, I-10135 Turin, Italy
[5] Kimia Solar Co, Kimia Solar Res Inst KSRI, Kashan 8713745868, Iran
[6] CNR, Area Ric Tor Vergata, Ist Struttura Mat CNR ISM, I-00133 Rome, Italy
[7] Univ Roma Tor Vergata, Dept Chem Sci & Technol, I-00133 Rome, Italy
[8] Univ Torino, ICxT Interdept Ctr, I-10153 Turin, Italy
关键词
P3HT; regioregularity; thermal stability; steric hindrance; molecular weight; HOLE-TRANSPORTING MATERIAL; THERMAL-STABILITY; GLASS-TRANSITION; HIGHLY EFFICIENT; RAY-DIFFRACTION; SPIRO-OMETAD; POLY(3-HEXYLTHIOPHENE); FILMS; PERFORMANCE; MORPHOLOGY;
D O I
10.1021/acssuschemeng.0c09015
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The commercialization of perovskite solar cells (PSCs) has seen an important limitation in the instability that afflicts the hole-transporting layer (HTL), namely, spiro-OMeTAD, used in high-efficiency devices. The latter is, in turn, relatively expensive, undermining the sustainability of the device. Its replacement with polymeric scaffolds, such as poly(3hexylthiophene) (P3HT), will solve these issues. In this work, we adopted various sustainable synthetic methods to obtain four different homemade P3HTs with different molecular weights (MWs) and regioregularities (RRs), leading to different structural properties. They are implemented as HTLs in PSCs, and the effect of their properties on the efficiency and thermal stability of devices is thoroughly discussed. The highest efficiency is obtained with the highest MW and low-RR polymer (17.6%) owing to the more sustainable approach, but a very promising value is also reached with a lower-MW but fully regioregular polymer (15%). Finally, large-area devices with an efficiency of 16.7%, fabricated with a high-MW P3HT, show more than 1000 h (T80 = 1108 h) of stability under accelerated thermal stress tests (85 degrees C) out of glovebox while keeping over 85% of the initial efficiency of an unencapsulated device after more than 3000 min under continuous light soaking (AM 1.5G).
引用
收藏
页码:5061 / 5073
页数:13
相关论文
共 50 条
[21]   Influence of P3HT molecular weight on film processing and solar cell performance [J].
Yu Junle ;
Tang Jie ;
Wang Chao ;
Zheng Yanqiong ;
Adachi, Chihaya ;
Zeng Chenghui .
2018 19TH INTERNATIONAL CONFERENCE ON ELECTRONIC PACKAGING TECHNOLOGY (ICEPT), 2018, :1602-1604
[22]   Influence of P3HT preaggregation process on performance of the P3HT:C60-PCBM solar cells [J].
Hibner-Kulicka, Paulina ;
Waliszewski, Witold ;
Borkowski, Michal ;
Luszczynska, Beata ;
Szymanski, Marek ;
Marszalek, Tomasz ;
Ulanski, Jacek .
MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2019, 693 (01) :82-96
[23]   Thermal stability of P3HT and P3HT:PCBM blends in the molten state [J].
Rodrigues, Alexandre ;
Castro, M. Cidalia R. ;
Farinha, Andreia S. F. ;
Oliveira, Manuel ;
Tome, Joao P. C. ;
Machado, Ana V. ;
Raposo, M. Manuela M. ;
Hilliou, Loic ;
Bernardo, Gabriel .
POLYMER TESTING, 2013, 32 (07) :1192-1201
[24]   Enhancement of power conversion efficiency and long-term stability of P3HT/PCBM solar cells using C60 derivatives with thiophene units as surfactants [J].
Lai, Yi-Cang ;
Higashihara, Tomoya ;
Hsu, Jung-Ching ;
Ueda, Mitsuru ;
Chen, Wen-Chang .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 97 :164-170
[25]   Improved efficiency of P3HT:PCBM solar cells by incorporation of silver oxide interfacial layer [J].
Das, Sayantan ;
Alford, T. L. .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (04)
[26]   Synthesis and characterization of cyclic P3HT as a donor polymer for organic solar cells [J].
Fukushima, Tatsuya ;
Ishibashi, Hirotaka ;
Suemasa, Daichi ;
Nakamura, Ryosuke ;
Yomogida, Masanobu ;
Isono, Takuya ;
Satoh, Toshifumi ;
Kaji, Hironori .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2019, 57 (05) :266-271
[27]   Perovskite/P3HT graded heterojunction by an additive-assisted method for high-efficiency perovskite solar cells with carbon electrodes [J].
Xie, Haixia ;
Liu, Jie ;
Yin, Xingtian ;
Guo, Yuxiao ;
Liu, Dan ;
Wang, Gangfeng ;
Que, Wenxiu .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 635
[28]   Optimization of Si NC/P3HT Hybrid Solar Cells [J].
Liu, Chin-Yi ;
Holman, Zachary C. ;
Kortshagen, Uwe R. .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (13) :2157-2164
[29]   Modified P3HT materials as hole transport layers for flexible perovskite solar cells [J].
De Rossi, Francesca ;
Renno, Giacomo ;
Taheri, Babak ;
Nia, Narges Yaghoobi ;
Ilieva, Viktoria ;
Fin, Andrea ;
Di Carlo, Aldo ;
Bonomo, Matteo ;
Barolo, Claudia ;
Brunetti, Francesca .
JOURNAL OF POWER SOURCES, 2021, 494
[30]   Perovskite solar cells: In pursuit of efficiency and stability [J].
Shaikh, Jasmin S. ;
Shaikh, Navajsharif S. ;
Sheikh, Arif D. ;
Mali, Sawanta S. ;
Kale, Abhijeet J. ;
Kanjanaboos, Pongsakorn ;
Hong, Chang Kook ;
Kim, J. H. ;
Patil, Pramod S. .
MATERIALS & DESIGN, 2017, 136 :54-80