CLASSIFICATION OF HYPERSPECTRAL IMAGES USING AUTOMATIC MARKER SELECTION AND MINIMUM SPANNING FOREST

被引:0
|
作者
Tarabalka, Yuliya [1 ,2 ]
Chanussot, Jocelyn [1 ]
Benediktsson, Jon Atli [2 ]
机构
[1] Grenoble Inst Technol, GIPSA Lab, Grenoble, France
[2] Univ Iceland, IS-101 Reykjavik, Iceland
来源
2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING | 2009年
关键词
Hyperspectral images; classification; marker selection; minimum spanning forest;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new method for segmentation and classification of hyperspectral images is proposed. The method is based on the construction of a Minimum Spanning Forest (MSF) from region markers. Markers are defined automatically from classification results. For this purpose, pixel-wise classification is performed and the most reliable classified pixels are chosen as markers. Furthermore, each marker defined from classification results is associated with a class label. Each tree in the MSF grown from a marker forms a region in the segmentation map. By assigning a class of each marker to all the pixels within the region grown from this marker, classification map is obtained. Furthermore, the classification map is refined, using results of a pixel-wise classification and a majority voting within the spatially connected regions. Experimental results are presented on a 200-band AVIRIS image of the Northwestern Indiana's Indian Pine site. The use of different dissimilarity measures for construction of the MSF is investigated. The proposed scheme improves classification accuracies, when compared to previously proposed classification techniques, and provides accurate segmentation and classification maps.
引用
收藏
页码:131 / +
页数:2
相关论文
共 50 条
  • [31] Band Selection for Hyperspectral Image Classification Using Extreme Learning Machine
    Li, Jiaojiao
    Kingsdorf, Benjamin
    Du, Qian
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XXIII, 2017, 10198
  • [32] A NOVEL APPROACH TO THE SELECTION OF SPATIALLY INVARIANT FEATURES FOR CLASSIFICATION OF HYPERSPECTRAL IMAGES
    Persello, Claudio
    Bruzzone, Lorenzo
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 312 - 315
  • [33] A Hybrid Approach for Supervised Spectral Band Selection in Hyperspectral Images Classification
    Medjahed, Seyyid Ahmed
    Ouali, Mohammed
    COMPUTACION Y SISTEMAS, 2020, 24 (01): : 213 - 219
  • [34] Superpixel-Based Unsupervised Band Selection for Classification of Hyperspectral Images
    Yang, Chen
    Bruzzone, Lorenzo
    Zhao, Haishi
    Tan, Yulei
    Guan, Renchu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (12): : 7230 - 7245
  • [35] Adaptive classification of hyperspectral images using local consistency
    Bian, Xiaoyong
    Zhang, Xiaolong
    Liu, Renfeng
    Ma, Li
    Fu, Xiaowei
    JOURNAL OF ELECTRONIC IMAGING, 2014, 23 (06)
  • [36] Classification of Hyperspectral Images Using Conventional Neural Networks
    Kozik, V., I
    Nezhevenko, E. S.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2021, 57 (02) : 123 - 131
  • [37] Using OWA Fusion Operators for the Classification of Hyperspectral Images
    Alajlan, Naif
    Bazi, Yakoub
    AlHichri, Haikel S.
    Melgani, Farid
    Yager, Ronald R.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (02) : 602 - 614
  • [38] Classification of Hyperspectral Images Using Conventional Neural Networks
    V. I. Kozik
    E. S. Nezhevenko
    Optoelectronics, Instrumentation and Data Processing, 2021, 57 : 123 - 131
  • [39] THEMATIC CLASSIFICATION OF HYPERSPECTRAL IMAGES USING CONJUGACY INDICATOR
    Fursov, V. A.
    Bibikov, S. A.
    Bajda, O. A.
    COMPUTER OPTICS, 2014, 38 (01) : 154 - 158
  • [40] Efficient Unsupervised Classification of Hyperspectral Images Using Voronoi Diagrams and Strong Patterns
    Bilius, Laura Bianca
    Pentiuc, Stefan Gheorghe
    SENSORS, 2020, 20 (19) : 1 - 16