Equidistant subspace codes

被引:11
作者
Gorla, Elisa [1 ]
Ravagnani, Alberto [1 ]
机构
[1] Univ Neuchatel, Inst Math, Emile Argand 11, CH-2000 Neuchatel, Switzerland
基金
瑞士国家科学基金会;
关键词
Network coding; Equidistant subspace codes; Sunflowers; Spreads and partial spreads; PROJECTIVE SPACES; PARTIAL SPREADS; NETWORK;
D O I
10.1016/j.laa.2015.10.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study equidistant subspace codes, i.e. subspace codes with the property that each two distinct codewords have the same distance. We provide an almost complete classification of such codes, under the assumption that the cardinality of the ground field is large enough. More precisely we prove that, for most values of the parameters, an equidistant code of maximum cardinality is either a sunflower or the orthogonal of a sunflower. We also study equidistant codes with extremal parameters, and establish general properties of equidistant codes that are not sunflowers. Finally, we propose a construction of equidistant codes based on our previous construction of partial spread codes, and provide an efficient decoding algorithm. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:48 / 65
页数:18
相关论文
共 18 条
[1]   Network information flow [J].
Ahlswede, R ;
Cai, N ;
Li, SYR ;
Yeung, RW .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (04) :1204-1216
[2]  
[Anonymous], 1979, J GEOM
[3]  
Bartoli D., 2015, DISCRETE AP IN PRESS
[4]   On sets of planes in projective spaces intersecting mutually in one point [J].
Beutelspacher, A ;
Eisfeld, J ;
Müller, J .
GEOMETRIAE DEDICATA, 1999, 78 (02) :143-159
[5]   PARTIAL SPREADS IN FINITE PROJECTIVE SPACES AND PARTIAL DESIGNS [J].
BEUTELSPACHER, A .
MATHEMATISCHE ZEITSCHRIFT, 1975, 145 (03) :211-229
[6]   EVERY LARGE SET OF EQUIDISTANT (0, +1, -1)-VECTORS FORMS A SUNFLOWER [J].
DEZA, M ;
FRANKL, P .
COMBINATORICA, 1981, 1 (03) :225-231
[7]  
Deza M., 1973, Discrete Math, V6, P343
[8]  
Drake D, 1979, J GEOM, V13, P210, DOI 10.1007/BF01919756
[9]  
Etzion T., EQUIDISTANT CODES GR
[10]   Partial spreads in random network coding [J].
Gorla, Elisa ;
Ravagnani, Alberto .
FINITE FIELDS AND THEIR APPLICATIONS, 2014, 26 :104-115