Phase Transition in Mixed l2/l1-norm Minimization for Block-Sparse Compressed Sensing

被引:0
|
作者
Tanaka, Toshiyuki [1 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Sakyo Ku, Yoshida Hon Machi, Kyoto, Kyoto 6068501, Japan
来源
2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT) | 2019年
关键词
POLYTOPES; SIGNALS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We have evaluated, via the replica method, phase transition thresholds for the mixed l(2)/l(1)-norm minimization applied to block-sparse compressed sensing with randomly generated measurement matrices. Our analysis takes into account that the matrix elements may be of non-zero mean, and shows that the phase transition threshold for the mixed l(2)/l(1)-norm minimization improves when the matrix elements have non-zero mean and the distribution of non-zero blocks of the target vector to be estimated has a certain imbalance.
引用
收藏
页码:2848 / 2852
页数:5
相关论文
共 50 条
  • [31] Fast Solution of l1-Norm Minimization Problems When the Solution May Be Sparse
    Donoho, David L.
    Tsaig, Yaakov
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (11) : 4789 - 4812
  • [32] SPECTRAL ESTIMATION BY REPETITIVE L1-NORM MINIMIZATION
    MARTINELLI, G
    ORLANDI, G
    BURRASCANO, P
    PROCEEDINGS OF THE IEEE, 1986, 74 (03) : 523 - 524
  • [33] ANALYSIS AND ALGORITHMS FOR SOME COMPRESSED SENSING MODELS BASED ON L1/L2 MINIMIZATION
    Zeng, Liaoyuan
    Yu, Peiran
    Pong, Ting Kei
    SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (02) : 1576 - 1603
  • [34] Combining L1-norm and L2-norm based sparse representations for face recognition
    Zhu, Qi
    Zhang, Daoqiang
    Sun, Han
    Li, Zhengming
    OPTIK, 2015, 126 (7-8): : 719 - 724
  • [35] Distortionless Beamforming Optimized With l1-Norm Minimization
    Emura, Satoru
    Araki, Shoko
    Nakatani, Tomohiro
    Harada, Noboru
    IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (07) : 936 - 940
  • [36] Gradient Projection with Approximate L0 Norm Minimization for Sparse Reconstruction in Compressed Sensing
    Wei, Ziran
    Zhang, Jianlin
    Xu, Zhiyong
    Huang, Yongmei
    Liu, Yong
    Fan, Xiangsuo
    SENSORS, 2018, 18 (10)
  • [37] Block-Sparse Analysis Regularization of Ill-posed Problems via l2,1-minimization
    Haltmeier, Markus
    2013 18TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2013, : 520 - 523
  • [38] Reconstruction analysis of block-sparse signal via truncated l2/l1-minimisation with redundant dictionaries
    Liu, Jiayi
    Wang, Jianjun
    Zhang, Feng
    IET SIGNAL PROCESSING, 2018, 12 (08) : 1034 - 1042
  • [39] L1-Norm Sparse Learning and Its Application
    Zhu Xin-feng
    Li Bin
    Wang Jian-dong
    COMPUTER-AIDED DESIGN, MANUFACTURING, MODELING AND SIMULATION, PTS 1-2, 2011, 88-89 : 379 - +
  • [40] MINIMIZATION OF l1-2 FOR COMPRESSED SENSING
    Yin, Penghang
    Lou, Yifei
    He, Qi
    Xin, Jack
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (01): : A536 - A563