Phase Transition in Mixed l2/l1-norm Minimization for Block-Sparse Compressed Sensing

被引:0
|
作者
Tanaka, Toshiyuki [1 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Sakyo Ku, Yoshida Hon Machi, Kyoto, Kyoto 6068501, Japan
来源
2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT) | 2019年
关键词
POLYTOPES; SIGNALS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We have evaluated, via the replica method, phase transition thresholds for the mixed l(2)/l(1)-norm minimization applied to block-sparse compressed sensing with randomly generated measurement matrices. Our analysis takes into account that the matrix elements may be of non-zero mean, and shows that the phase transition threshold for the mixed l(2)/l(1)-norm minimization improves when the matrix elements have non-zero mean and the distribution of non-zero blocks of the target vector to be estimated has a certain imbalance.
引用
收藏
页码:2848 / 2852
页数:5
相关论文
共 50 条
  • [21] Design of Sparse FIR Filters Based on Reweighted l1-Norm Minimization
    Yang, Yuhua
    Zhu, Wei-Ping
    Wu, Dalei
    2015 IEEE INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2015, : 858 - 862
  • [22] k Block Sparse Vector Recovery via Block l1 - l2 Minimization
    Xie, Shaohua
    Liang, Kaihao
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 42 (05) : 2897 - 2915
  • [23] L1-NORM MINIMIZATION FOR OCTONION SIGNALS
    Wang, Rui
    Xiang, Guijun
    Zhang, Fagan
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), 2016, : 552 - 556
  • [24] A Laplacian approach to l1-norm minimization
    Bonifaci, Vincenzo
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2021, 79 (02) : 441 - 469
  • [25] Performance analysis of L1-norm minimization for compressed sensing with non-zero-mean matrix elements
    Tanaka, Toshiyuki
    2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 401 - 405
  • [26] Linearized alternating directions method for l1-norm inequality constrained l1-norm minimization
    Cao, Shuhan
    Xiao, Yunhai
    Zhu, Hong
    APPLIED NUMERICAL MATHEMATICS, 2014, 85 : 142 - 153
  • [27] ORDER REDUCTION BY L1-NORM AND L00-NORM MINIMIZATION
    ELATTAR, RA
    VIDYASAGAR, M
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1978, 23 (04) : 731 - 734
  • [28] Bayesian L1-norm sparse learning
    Lin, Yuanqing
    Lee, Daniel D.
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 5463 - 5466
  • [29] L1-norm plus L2-norm sparse parameter for image recognition
    Feng, Qingxiang
    Zhu, Qi
    Tang, Lin-Lin
    Pan, Jeng-Shyang
    OPTIK, 2015, 126 (23): : 4078 - 4082
  • [30] CFAR Detector for Compressed Sensing Radar Based on l1-norm Minimisation
    Kozlov, Dmitrii
    Ott, Peter
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 2050 - 2054