Mechanism of the antimycin A-mediated enhancement of t-butylhydraperoxide-induced single-strand breakage in DNA

被引:29
作者
Guidarelli, A
Clementi, E
Brambilla, L
Cantoni, O
机构
[1] Univ Urbino, Ist Farmacol & Farmacognosia, I-61029 Urbino, PS, Italy
[2] Univ Urbino, Ctr Farmacol Oncol Sperimentale, I-61029 Urbino, PS, Italy
[3] Univ Reggio Calabria, Dipartimento Farmacol, I-88021 Catanzaro, Italy
[4] San Raffaele Sci Inst, DIBIT, Mol & Cellular Pharmacol Ctr, I-20132 Milan, Italy
关键词
D O I
10.1042/bj3280801
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Inhibitors of complex III increased the DNA strand scission induced by t-butylhydroperoxide (tB-OOH) and cumene hydroperoxide but did not affect DNA damage induced by H2O2. The hypothesis that these effects are selectively linked to inhibition of the electron transport from cytochrome b to cytochrome c(1) is validated by the following observations: (1) two complex III inhibitors, antimycin A and 2-heptyl-4-hydroxyquinoline N-oxide, enhanced the tB-OOH-induced DNA cleavage over the same concentration range as that in which inhibition of oxygen consumption was observed; (2) the complex III inhibitor-mediated enhancement of tB-OOH-induced DNA damage was abolished by the complex I inhibitor rotenone or by glucose omission, and (3) the enhancing effects of antimycin A were not observed in respiration-deficient cells. The mechanism whereby the complex III inhibitors potentiate DNA cleavage promoted by tB-OOH was subsequently investigated with intact as well as permeabilized cells. H2O2, produced at the level of mitochondria via a Ca2+-dependent process, was found to account for the enhancing effects of antimycin A.
引用
收藏
页码:801 / 806
页数:6
相关论文
共 35 条
[1]   ELABORATION OF CELLULAR DNA BREAKS BY HYDROPEROXIDES [J].
BAKER, MA ;
HE, SQ .
FREE RADICAL BIOLOGY AND MEDICINE, 1991, 11 (06) :563-572
[2]   MECHANISM OF RADICAL PRODUCTION FROM THE REACTION OF CYTOCHROME-C WITH ORGANIC HYDROPEROXIDES - AN ESR SPIN-TRAPPING INVESTIGATION [J].
BARR, DP ;
MASON, RP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (21) :12709-12716
[3]   PYRIDINE-NUCLEOTIDE OXIDATION, CA-2+ CYCLING AND MEMBRANE DAMAGE DURING TERT-BUTYL HYDROPEROXIDE METABOLISM BY RAT-LIVER MITOCHONDRIA [J].
BELLOMO, G ;
MARTINO, A ;
RICHELMI, P ;
MOORE, GA ;
JEWELL, SA ;
ORRENIUS, S .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1984, 140 (01) :1-6
[4]   MITOCHONDRIAL GENERATION OF HYDROGEN-PEROXIDE - GENERAL PROPERTIES AND EFFECT OF HYPERBARIC-OXYGEN [J].
BOVERIS, A ;
CHANCE, B .
BIOCHEMICAL JOURNAL, 1973, 134 (03) :707-716
[5]   ENHANCEMENT OF HYDROGEN-PEROXIDE FORMATION BY PROTOPHORES AND IONOPHORES IN ANTIMYCIN-SUPPLEMENTED MITOCHONDRIA [J].
CADENAS, E ;
BOVERIS, A .
BIOCHEMICAL JOURNAL, 1980, 188 (01) :31-37
[6]   EFFECT OF 3-AMINOBENZAMIDE ON DNA STRAND-BREAK REJOINING AND CYTOTOXICITY IN CHO CELLS TREATED WITH HYDROGEN-PEROXIDE [J].
CANTONI, O ;
MURRAY, D ;
MEYN, RE .
BIOCHIMICA ET BIOPHYSICA ACTA, 1986, 867 (03) :135-143
[7]   INTRACELLULAR CALCIUM HOMEOSTASIS [J].
CARAFOLI, E .
ANNUAL REVIEW OF BIOCHEMISTRY, 1987, 56 :395-433
[8]   PERMEABILIZATION OF THE INNER MITOCHONDRIAL-MEMBRANE BY CA2+ IONS IS STIMULATED BY T-BUTYL HYDROPEROXIDE AND MEDIATED BY REACTIVE OXYGEN SPECIES GENERATED BY MITOCHONDRIA [J].
CASTILHO, RF ;
KOWALTOWSKI, AJ ;
MEINICKE, AR ;
BECHARA, EJH ;
VERCESI, AE .
FREE RADICAL BIOLOGY AND MEDICINE, 1995, 18 (03) :479-486
[9]   GENERATION OF HYDROGEN-PEROXIDE BY BRAIN MITOCHONDRIA - THE EFFECT OF REOXYGENATION FOLLOWING POSTDECAPITATIVE ISCHEMIA [J].
CINO, M ;
DELMAESTRO, RF .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1989, 269 (02) :623-638
[10]  
COLEMAN JB, 1989, MOL PHARMACOL, V36, P193