Decomposition of Jordan automorphisms of strictly triangular matrix algebra over local rings

被引:7
作者
Wang, XT [1 ]
You, H [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
基金
美国国家科学基金会;
关键词
Jordan automorphism; strictly triangular matrix algebra; local ring;
D O I
10.1016/j.laa.2004.06.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Nn+1 (R) be the algebra of all strictly upper triangular n + I by n + I matrices over a 2-torsionfree commutative local ring R with identity. In this paper, we prove that any Jordan automorphism, of Nn+1 (R) can be uniquely written as a product of a graph automorphism, a diagonal automorphism, an inner automorphism and a central automorphism for n greater than or equal to 3. In the cases it = 1, 2, we also give a decomposition for any Jordan automorphism of Nn+1 (R) (I less than or equal to n less than or equal to 2). (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:183 / 193
页数:11
相关论文
共 10 条
[1]   ON SEMI-AUTOMORPHISMS OF DIVISION ALGEBRAS [J].
ANCOCHEA, G .
ANNALS OF MATHEMATICS, 1947, 48 (01) :147-153
[2]   JORDAN HOMOMORPHISMS OF SEMIPRIME RINGS [J].
BAXTER, WE ;
MARTINDALE, WS .
JOURNAL OF ALGEBRA, 1979, 56 (02) :457-471
[3]   Jordan isomorphisms of triangular matrix algebras over a connected commutative ring [J].
Beidar, KI ;
Bresar, M ;
Chebotar, MA .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 312 (1-3) :197-201
[4]   JORDAN MAPPINGS OF SEMIPRIME RINGS [J].
BRESAR, M .
JOURNAL OF ALGEBRA, 1989, 127 (01) :218-228
[5]   Automorphisms of the Lie algebra of strictly upper triangular matrices over certain commutative rings [J].
Cao, Y .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 329 (1-3) :175-187
[6]   Automorphisms of certain Lie algebras of upper triangular matrices over a commutative ring [J].
Cao, YA .
JOURNAL OF ALGEBRA, 1997, 189 (02) :506-513
[7]  
Herstein I. N., 1956, T AM MATH SOC, V81, P331
[8]   AUTOMORPHISMS OF UPPER-TRIANGULAR MATRIX-RINGS [J].
JONDRUP, S .
ARCHIV DER MATHEMATIK, 1987, 49 (06) :497-502
[9]   The automorphism group of certain radical matrix rings [J].
Kuzucuoglu, F ;
Levchuk, VM .
JOURNAL OF ALGEBRA, 2001, 243 (02) :473-485
[10]  
Tang XM, 2001, LINEAR ALGEBRA APPL, V338, P145