On Sobolev extension domains in Rn

被引:33
作者
Shvartsman, Pavel [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
Sobolev space; Extension; Domain; Inner metric; WEIGHTED NORM INEQUALITIES; LIPSCHITZ CLASSES; REGULAR SUBSETS; MEASURE DENSITY; EXTENDABILITY; OPERATORS; SPACES;
D O I
10.1016/j.jfa.2010.01.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe a class of Sobolev W-p(k)-extension domains Omega subset of R-n determined by a certain inner subhyperbolic metric in Omega. This enables us to characterize finitely connected Sobolev W-p(1)-extension domains in R-2 for each p > 2. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2205 / 2245
页数:41
相关论文
共 50 条
[41]   A Density Result for Homogeneous Sobolev Spaces on Planar Domains [J].
Debanjan Nandi ;
Tapio Rajala ;
Timo Schultz .
Potential Analysis, 2019, 51 :483-498
[42]   Sobolev Orthogonal Polynomials of Several Variables on Product Domains [J].
Duenas Ruiz, Herbert ;
Salazar-Morales, Omar ;
Pinar, Miguel .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
[43]   A Density Result for Homogeneous Sobolev Spaces on Planar Domains [J].
Nandi, Debanjan ;
Rajala, Tapio ;
Schultz, Timo .
POTENTIAL ANALYSIS, 2019, 51 (04) :483-498
[44]   A density problem for Sobolev spaces on Gromov hyperbolic domains [J].
Koskela, Pekka ;
Rajala, Tapio ;
Zhang, Yi Ru-Ya .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 154 :189-209
[45]   SOBOLEV'S EMBEDDING THEOREM FOR ANISOTROPICALLY IRREGULAR DOMAINS [J].
Besov, O. V. .
EURASIAN MATHEMATICAL JOURNAL, 2011, 2 (01) :32-51
[46]   SOME COUNTEREXAMPLES FOR THE THEORY OF SOBOLEV SPACES ON BAD DOMAINS [J].
MAZYA, V ;
NETRUSOV, Y .
POTENTIAL ANALYSIS, 1995, 4 (01) :47-65
[47]   An Inverse Inequality for Fractional Sobolev Norms in Unbounded Domains [J].
Lefterov, Radostin H. ;
Todorov, Todor D. .
CONTEMPORARY MATHEMATICS, 2024, 5 (04) :5991-6003
[48]   EXTENSION FORMULAS AND NORM INEQUALITIES IN SOBOLEV HILBERT SPACES [J].
Saitoh, Saburou .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (02) :489-497
[49]   Extension of Variable Triebel–Lizorkin-Type Space on Domains [J].
Qi Sun ;
Ciqiang Zhuo .
Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 :201-216
[50]   Extension of Variable Triebel-Lizorkin-Type Space on Domains [J].
Sun, Qi ;
Zhuo, Ciqiang .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (01) :201-216