On Sobolev extension domains in Rn

被引:33
作者
Shvartsman, Pavel [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
Sobolev space; Extension; Domain; Inner metric; WEIGHTED NORM INEQUALITIES; LIPSCHITZ CLASSES; REGULAR SUBSETS; MEASURE DENSITY; EXTENDABILITY; OPERATORS; SPACES;
D O I
10.1016/j.jfa.2010.01.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe a class of Sobolev W-p(k)-extension domains Omega subset of R-n determined by a certain inner subhyperbolic metric in Omega. This enables us to characterize finitely connected Sobolev W-p(1)-extension domains in R-2 for each p > 2. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2205 / 2245
页数:41
相关论文
共 50 条
[21]   Sobolev Wp1-spaces on d-thick closed subsets of Rn [J].
Vodopyanov, S. K. ;
Tyulenev, A. I. .
SBORNIK MATHEMATICS, 2020, 211 (06) :786-837
[22]   Sobolev Wp1-spaces on closed subsets of Rn [J].
Shvartsman, P. .
ADVANCES IN MATHEMATICS, 2009, 220 (06) :1842-1922
[23]   Anisotropic fractional Sobolev extension and its applications [J].
Xu, Chengmeng ;
Sun, Wenchang .
ANNALS OF FUNCTIONAL ANALYSIS, 2022, 13 (03)
[25]   Poincare inequalities, uniform domains and extension properties for Newton-Sobolev functions in metric spaces [J].
Bjoern, Jana ;
Shanmugalingam, Nageswari .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (01) :190-208
[26]   Orlicz-Sobolev extensions and measure density condition [J].
Heikkinen, Toni ;
Tuominen, Heli .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 368 (02) :508-524
[27]   Approximate extension in Sobolev space [J].
Drake, Marjorie K. .
ADVANCES IN MATHEMATICS, 2023, 420
[28]   ON SUBSTITUTION AND EXTENSION OPERATORS IN BANACH-SOBOLEV FUNCTION SPACES [J].
Mamedov, Eminaga M. .
PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2022, 48 (01) :88-103
[29]   The quasiconformal subinvariance property of John domains in Rn and its applications [J].
Huang, Manzi ;
Li, Yaxiang ;
Ponnusamy, Saminathan ;
Wang, Xiantao .
MATHEMATISCHE ANNALEN, 2015, 363 (1-2) :549-615
[30]   Optimal Extension to Sobolev Rough Paths [J].
Liu, Chong ;
Proemel, David J. ;
Teichmann, Josef .
POTENTIAL ANALYSIS, 2023, 59 (03) :1399-1424