Fault diagnosis in industrial process by using LSTM and an elastic net

被引:4
作者
Marquez-Vera, M. A. [1 ]
Lopez-Ortega, O. [2 ]
Ramos-Velasco, L. E. [3 ]
Ortega-Mendoza, R. M. [4 ]
Fernandez-Neri, B. J. [1 ]
Zuniga-Pena, N. S. [1 ,2 ]
机构
[1] Univ Politecn Pachuca, C Pachuca Cd Sahagun Km 20, Zempoala 43830, Hgo, Mexico
[2] Univ Autonoma Estado Hidalgo, C Pachuca Tulancingo Km 4-5, Mineral De La Reforma 42090, Hgo, Mexico
[3] Univ Politecn Metropolitana Hidalgo, Blvd Acceso Tolcayuca 1009, Tolcayuca 43860, Hgo, Mexico
[4] Univ Politecn Tulancingo, Calle Ingn 100, Tulancingo De Bravo 43629, Hgo, Mexico
来源
REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL | 2021年 / 18卷 / 02期
关键词
Fault diagnosis; wavelet transform; recurrent neural networks; independent component analysis; elastic net; COMPONENT ANALYSIS; WAVELET TRANSFORM; CLASSIFICATION; ICA; IDENTIFICATION; MACHINE; NETWORKS; LOCATION; ENTROPY; SYSTEMS;
D O I
10.4995/riai.2020.13611
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fault diagnosis is important for industrial processes because it permits to determine the necessity of emergency stops in a process and/or to propose a maintenance plan. Two strategies for fault diagnosis are compared in this work. On the one hand, the data are preprocessed using the independent components analysis for dimension reduction, then the wavelet transform is used in order to highlight the faulty signals, with this information an artificial neural network was fed. On the other hand, the second strategy, the main contribution of this work, is the implementation of a long short term memory. This memory is fed with the most representative variables selected by an elastic net to use both, the L-1 and L-2 norms. These strategies are applied in the Tennessee Eastman process, a benchmark widely used for fault diagnosis. The fault isolation had better results than those reported in the literature.
引用
收藏
页码:160 / 171
页数:12
相关论文
共 50 条
[21]   Novel Manifold Autoencoder for Industrial Process Fault Diagnosis [J].
He, Yan-Lin ;
Lu, Zi-Yang ;
Zhu, Qun-Xiong .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025, 21 (01) :858-865
[22]   Industrial process fault diagnosis algorithm based on RLANPE [J].
Mou, Miao ;
Zhao, Xiao-Qiang .
Kongzhi yu Juece/Control and Decision, 2025, 40 (02) :590-598
[23]   Industrial Fault Diagnosis using Hilbert Transform and Texture Features [J].
Zabin, Mahe ;
Uddin, Jia ;
Choi, Ho-Jin ;
Furhad, Md Hasan ;
Ullah, Abu Barkat .
2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2021), 2021, :121-128
[24]   Hybrid deep transfer learning architecture for industrial fault diagnosis using Hilbert transform and DCNN-LSTM [J].
Zabin, Mahe ;
Choi, Ho-Jin ;
Uddin, Jia .
JOURNAL OF SUPERCOMPUTING, 2023, 79 (05) :5181-5200
[25]   An Improved Fault Diagnosis Strategy for Process Monitoring Using Reconstruction Based Contributions [J].
Lahdhiri, Hajer ;
Aljuhani, Ahamed ;
Abdellafou, Khaoula Ben ;
Taouali, Okba .
IEEE ACCESS, 2021, 9 :79520-79533
[26]   One step forward for smart chemical process fault detection and diagnosis [J].
Bi, Xiaotian ;
Qin, Ruoshi ;
Wu, Deyang ;
Zheng, Shaodong ;
Zhao, Jinsong .
COMPUTERS & CHEMICAL ENGINEERING, 2022, 164
[27]   Research on Bearing Fault Diagnosis Method Based on Filter Features of MOMLMEDA and LSTM [J].
Li, Yong ;
Cheng, Gang ;
Chen, Xihui ;
Pang, Yusong .
ENTROPY, 2019, 21 (10)
[28]   Vibration-Based Bearing Fault Diagnosis Using Reflection Coefficients of the Autoregressive Model [J].
Heydarzadeh, Mehrdad ;
Nourani, Mehrdad ;
Azimi, Vahid ;
Kashani-Pour, Amir R. .
2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, :5801-5806
[29]   An approach to multiple fault diagnosis using fuzzy logic [J].
Rodriguez Ramos, Adrian ;
Dominguez Acosta, Carlos ;
Rivera Torres, Pedro J. ;
Serrano Mercado, Eileen I. ;
Beauchamp Baez, Gerson ;
Anido Rifon, Luis ;
Llanes-Santiago, Orestes .
JOURNAL OF INTELLIGENT MANUFACTURING, 2019, 30 (01) :429-439
[30]   Normalized Relative RBC-Based Minimum Risk Bayesian Decision Approach for Fault Diagnosis of Industrial Process [J].
Zheng, Ying ;
Mao, Simin ;
Liu, Shujie ;
Wong, David Shan-Hill ;
Wang, Yan-Wei .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (12) :7723-7732