Fault diagnosis in industrial process by using LSTM and an elastic net

被引:4
作者
Marquez-Vera, M. A. [1 ]
Lopez-Ortega, O. [2 ]
Ramos-Velasco, L. E. [3 ]
Ortega-Mendoza, R. M. [4 ]
Fernandez-Neri, B. J. [1 ]
Zuniga-Pena, N. S. [1 ,2 ]
机构
[1] Univ Politecn Pachuca, C Pachuca Cd Sahagun Km 20, Zempoala 43830, Hgo, Mexico
[2] Univ Autonoma Estado Hidalgo, C Pachuca Tulancingo Km 4-5, Mineral De La Reforma 42090, Hgo, Mexico
[3] Univ Politecn Metropolitana Hidalgo, Blvd Acceso Tolcayuca 1009, Tolcayuca 43860, Hgo, Mexico
[4] Univ Politecn Tulancingo, Calle Ingn 100, Tulancingo De Bravo 43629, Hgo, Mexico
来源
REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL | 2021年 / 18卷 / 02期
关键词
Fault diagnosis; wavelet transform; recurrent neural networks; independent component analysis; elastic net; COMPONENT ANALYSIS; WAVELET TRANSFORM; CLASSIFICATION; ICA; IDENTIFICATION; MACHINE; NETWORKS; LOCATION; ENTROPY; SYSTEMS;
D O I
10.4995/riai.2020.13611
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fault diagnosis is important for industrial processes because it permits to determine the necessity of emergency stops in a process and/or to propose a maintenance plan. Two strategies for fault diagnosis are compared in this work. On the one hand, the data are preprocessed using the independent components analysis for dimension reduction, then the wavelet transform is used in order to highlight the faulty signals, with this information an artificial neural network was fed. On the other hand, the second strategy, the main contribution of this work, is the implementation of a long short term memory. This memory is fed with the most representative variables selected by an elastic net to use both, the L-1 and L-2 norms. These strategies are applied in the Tennessee Eastman process, a benchmark widely used for fault diagnosis. The fault isolation had better results than those reported in the literature.
引用
收藏
页码:160 / 171
页数:12
相关论文
共 50 条
[11]   Fault detection and diagnosis of chemical process using enhanced KECA [J].
Zhang, Haili ;
Qi, Yongsheng ;
Wang, Lin ;
Gao, Xuejin ;
Wang, Xichang .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2017, 161 :61-69
[12]   Hierarchical Deep LSTM for Fault Detection and Diagnosis for a Chemical Process [J].
Agarwal, Piyush ;
Gonzalez, Jorge Ivan Mireles ;
Elkamel, Ali ;
Budman, Hector .
PROCESSES, 2022, 10 (12)
[13]   A deep learning methodology based on adaptive multiscale CNN and enhanced highway LSTM for industrial process fault diagnosis [J].
Zhao, Shuaiyu ;
Duan, Yiling ;
Roy, Nitin ;
Zhang, Bin .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 249
[14]   Industrial drive fault diagnosis through vibration analysis using wavelet transform [J].
Jayakumar, K. ;
Thangavel, S. .
JOURNAL OF VIBRATION AND CONTROL, 2017, 23 (12) :2003-2013
[15]   The use of elastic net and neural networks in industrial process tomography [J].
Rymarczyk, Tomasz ;
Klosowski, Grzegorz .
PRZEGLAD ELEKTROTECHNICZNY, 2019, 95 (05) :59-62
[16]   Hybrid deep transfer learning architecture for industrial fault diagnosis using Hilbert transform and DCNN–LSTM [J].
Mahe Zabin ;
Ho-Jin Choi ;
Jia Uddin .
The Journal of Supercomputing, 2023, 79 :5181-5200
[17]   Twofold Weighted-Based Statistical Feature KECA for Nonlinear Industrial Process Fault Diagnosis [J].
Li, Tao ;
Han, Yongming ;
Hu, Xuan ;
Ma, Bo ;
Geng, Zhiqiang .
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, :3901-3910
[18]   Press-fit process fault diagnosis using 1DCNN-LSTM method [J].
Ye, Xialiang ;
Li, Minbo .
ASSEMBLY AUTOMATION, 2022, 42 (03) :342-349
[19]   Autoencoder embedded dictionary learning for nonlinear industrial process fault diagnosis [J].
Li, Yanxia ;
Chai, Yi ;
Yin, Hongpeng .
JOURNAL OF PROCESS CONTROL, 2021, 101 :24-34
[20]   A Multichannel LSTM-CNN Method for Fault Diagnosis of Chemical Process [J].
Shao, Bilin ;
Hu, Xiaoli ;
Bian, Genqing ;
Zhao, Yu .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019