A Successive Linear Programming Approach to Solving the IV-ACOPF

被引:91
作者
Castillo, Anya [1 ,2 ]
Lipka, Paula [3 ]
Watson, Jean-Paul [4 ]
Oren, Shmuel S. [3 ]
O'Neill, Richard P. [2 ]
机构
[1] Johns Hopkins Univ, Baltimore, MD 21218 USA
[2] FERC, Washington, DC 20426 USA
[3] Univ Calif Berkeley, Berkeley, CA 94720 USA
[4] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
基金
美国国家科学基金会;
关键词
Alternating current optimal power flow (ACOPF); optimal power flow (OPF); rectangular coordinates; successive linear programming (SLP); POWER-FLOW LITERATURE; PART I; OPTIMIZATION;
D O I
10.1109/TPWRS.2015.2487042
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Improved formulations of and solution techniques for the alternating current optimal power flow (ACOPF) problem are critical to improving current market practices in economic dispatch. We introduce the IV-ACOPF formulation that unlike canonical ACOPF formulations-which represent network balancing through nonlinear coupling-is based on a current injections approach that linearly couple the quadratic constraints at each bus; yet, the IV-ACOPF is mathematically equivalent to the canonical ACOPF formulation. We propose a successive linear programming (SLP) approach to solve the IV-ACOPF, which we refer to as the SLP IV-ACOPF algorithm. The SLP IV-ACOPF leverages commercial LP solvers and can be readily extended and integrated into more complex decision processes, e.g., unit commitment and transmission switching. We demonstrate with the standard MATPOWER test suite an acceptable quality of convergence to a best-known solution and linear scaling of computational time in proportion to network
引用
收藏
页码:2752 / 2763
页数:12
相关论文
共 48 条
[1]   FURTHER DEVELOPMENTS IN LP-BASED OPTIMAL POWER FLOW [J].
ALSAC, O ;
BRIGHT, J ;
PRAIS, M ;
STOTT, B .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1990, 5 (03) :697-711
[2]  
Alsac O., 1975, P IEEE POW ENG SOC 1
[3]  
[Anonymous], 2014, CPLEX DOC REL 12 4
[4]  
[Anonymous], 1962, B SOC FRAN ELEC
[5]  
[Anonymous], 2014, MATLAB VERS 8 3 0 53
[6]   Semidefinite programming for optimal power flow problems [J].
Bai, Xiaoqing ;
Wei, Hua ;
Fujisawa, Katsuki ;
Wang, Yong .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2008, 30 (6-7) :383-392
[7]  
Byrd R. H., 2005, LARGE SCALE NONLIN O, P35
[8]  
Cain M.B., 2013, Optimal power flow papers: Paper 1. History of optimal power flow and formulations
[9]  
Castillo A., 2013, COMPUTATIONAL PERFOR
[10]  
Castillo A., 2013, SURVEY APPROACHES SO