Fock-space approach to stochastic susceptible-infected-recovered models

被引:1
作者
de Souza, Danillo B. [1 ]
Araujo, Hugo A. [2 ,3 ]
Duarte-Filho, Gerson C. [4 ]
Gaffney, Eamonn A. [5 ]
Santos, Fernando A. N. [2 ,6 ]
Raposo, Ernesto P. [3 ]
机构
[1] Basque Ctr Appl Math, Math Computat & Expt Neurosci Res Grp, Bilbao 48009, Bizkaia, Spain
[2] Univ Fed Pernambuco, Dept Matemat, BR-50670901 Recife, PE, Brazil
[3] Univ Fed Pernambuco, Dept Fis, Lab Fis Teor & Computac, BR-50670901 Recife, PE, Brazil
[4] Univ Fed Sergipe, Dept Fis, BR-49100000 Sao Cristovao, SE, Brazil
[5] Univ Oxford, Wolfson Ctr Math Biol, Math Inst, Oxford OX2 6GG, England
[6] Vrije Univ Amsterdam, Dept Anat & Neurosci, Amsterdam Neurosci, Amsterdam UMC, NL-1081 HZ Amsterdam, Netherlands
关键词
DEPENDENT PERTURBATION-THEORY; 2ND QUANTIZATION METHODS; VACCINATION;
D O I
10.1103/PhysRevE.106.014136
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the stochastic susceptible-infected-recovered (SIR) model of infectious disease dynamics in the Fock-space approach. In contrast to conventional SIR models based on ordinary differential equations for the subpopulation sizes of S, I, and R individuals, the stochastic SIR model is driven by a master equation governing the transition probabilities among the system???s states defined by SIR occupation numbers. In the Fock-space approach the master equation is recast in the form of a real-valued Schr??dinger-type equation with a second quantization Hamiltonian-like operator describing the infection and recovery processes. We find exact analytic expressions for the Hamiltonian eigenvalues for any population size N. We present small-and large -N results for the average numbers of SIR individuals and basic reproduction number. For small N we also obtain the probability distributions of SIR states, epidemic sizes and durations, which cannot be found from deterministic SIR models. Our Fock-space approach to stochastic SIR models introduces a powerful set of tools to calculate central quantities of epidemic processes, especially for relatively small populations where statistical fluctuations not captured by conventional deterministic SIR models play a crucial role.
引用
收藏
页数:12
相关论文
共 70 条
  • [1] REACTION-DIFFUSION PROCESSES, CRITICAL-DYNAMICS, AND QUANTUM CHAINS
    ALCARAZ, FC
    DROZ, M
    HENKEL, M
    RITTENBERG, V
    [J]. ANNALS OF PHYSICS, 1994, 230 (02) : 250 - 302
  • [2] Allen L.J.S., 2011, INTRO STOCHASTIC PRO, Vsecond, pxxiv+466
  • [3] A DISCRETE-TIME MODEL WITH VACCINATION FOR A MEASLES EPIDEMIC
    ALLEN, LJS
    JONES, MA
    MARTIN, CF
    [J]. MATHEMATICAL BIOSCIENCES, 1991, 105 (01) : 111 - 131
  • [4] Interplay of sources of stochastic noise in a resource-based model
    Amado, Andre
    Santana-Filho, J. V.
    Campos, Paulo R. A.
    Raposo, Ernesto P.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (04)
  • [5] POPULATION BIOLOGY OF INFECTIOUS-DISEASES .1.
    ANDERSON, RM
    MAY, RM
    [J]. NATURE, 1979, 280 (5721) : 361 - 367
  • [6] THE KERMACK-MCKENDRICK EPIDEMIC THRESHOLD THEOREM - DISCUSSION
    ANDERSON, RM
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 1991, 53 (1-2) : 3 - 32
  • [7] [Anonymous], 2010, An introduction to infectious diseas modelling
  • [8] Revisiting Levy flights on bounded domains: a Fock space approach
    Araujo, H. A.
    Lukin, M. O.
    da Luz, M. G. E.
    Viswanathan, G. M.
    Santos, F. A. N.
    Raposo, E. P.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (08):
  • [9] Bailey NT., 1975, MATH THEORY INFECT D
  • [10] A SIMPLE STOCHASTIC EPIDEMIC
    BAILEY, NTJ
    [J]. BIOMETRIKA, 1950, 37 (3-4) : 193 - 202