Riemannian geometry of quantum computation

被引:8
作者
Brandt, Howard E. [1 ]
机构
[1] USA, Res Lab, Adelphi, MD USA
关键词
Quantum computing; Quantum circuits; Quantum complexity; Differential geometry; Riemannian geometry; Geodesics;
D O I
10.1016/j.na.2008.11.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A review is given of some recent developments in the differential geometry of quantum computation for which the quantum evolution is described by the special unitary unimodular group, SU(2(n)). Using the Lie algebra su(2(n)), detailed derivations are given of a useful Riemannian geometry of SU(2(n)), including the connection and the geodesic equation for minimal complexity quantum computations. Published by Elsevier Ltd
引用
收藏
页码:E474 / E486
页数:13
相关论文
共 25 条
[1]  
[Anonymous], 2002, AM MATH SOC, DOI DOI 10.1090/SURV/091
[2]  
[Anonymous], LEIPZIGER BER
[3]  
[Anonymous], 1997, Differential Geometry For Physicists
[4]   Note on the integration of linear differential equations [J].
Baker, HF .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1905, 2 :293-296
[5]  
Campbell J. E., 1897, P LOND MATH SOC, Vs129, P14, DOI [10.1112/plms/s1-29.1.14, DOI 10.1112/PLMS/S1-29.1.14]
[6]  
Campbell J.E., 1897, P LOND MATH SOC, V28, P381
[7]   Sub-Finsler geometry in dimension three [J].
Clelland, Jeanne N. ;
Moseley, Christopher G. .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2006, 24 (06) :628-651
[8]  
Conlon L., 2001, Differentiable manifolds, V2nd
[9]  
Cornwell J. F, 1984, GROUP THEORY PHYS, V2
[10]  
DOWLING MR, 2008, QUANTUM INF COMPUT, V8