Observation of ultracold atomic bubbles in orbital microgravity

被引:71
作者
Carollo, R. A. [1 ]
Aveline, D. C. [2 ]
Rhyno, B. [3 ]
Vishveshwara, S. [3 ]
Lannert, C. [4 ,5 ]
Murphree, J. D. [1 ]
Elliott, E. R. [2 ]
Williams, J. R. [2 ]
Thompson, R. J. [2 ]
Lundblad, N. [1 ]
机构
[1] Bates Coll, Dept Phys & Astron, Lewiston, ME 04240 USA
[2] CALTECH, Jet Prop Lab, Pasadena, CA USA
[3] Univ Illinois, Dept Phys, Urbana, IL USA
[4] Smith Coll, Dept Phys, Northampton, MA USA
[5] Univ Massachusetts, Dept Phys, Amherst, MA USA
关键词
BOSE-EINSTEIN CONDENSATION; COLD ATOMS; TRANSITION; DYNAMICS; GAS;
D O I
10.1038/s41586-022-04639-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Substantial leaps in the understanding of quantum systems have been driven by exploring geometry, topology, dimensionality and interactions in ultracold atomic ensembles(1-6). A system where atoms evolve while confined on an ellipsoidal surface represents a heretofore unexplored geometry and topology. Realizing an ultracold bubble-potentially Bose-Einstein condensed-relates to areas of interest including quantized-vortex flow constrained to a closed surface topology, collective modes and self-interference via bubble expansion(7-17). Large ultracold bubbles, created by inflating smaller condensates, directly tie into Hubble-analogue expansion physics(18-20). Here we report observations from the NASA Cold Atom Lab(21) facility onboard the International Space Station of bubbles of ultracold atoms created using a radiofrequency-dressing protocol. We observe bubble configurations of varying size and initial temperature, and explore bubble thermodynamics, demonstrating substantial cooling associated with inflation. We achieve partial coverings of bubble traps greater than one millimetre in size with ultracold films of inferred few-micrometre thickness, and we observe the dynamics of shell structures projected into free-evolving harmonic confinement. The observations are among the first measurements made with ultracold atoms in space, using perpetual freefall to explore quantum systems that are prohibitively difficult to create on Earth. This work heralds future studies (in orbital microgravity) of the Bose-Einstein condensed bubble, the character of its excitations and the role of topology in its evolution.
引用
收藏
页码:281 / +
页数:13
相关论文
共 60 条
[1]   Evaporative cooling in a radio-frequency trap [J].
Alzar, Carlos L. Garrido ;
Perrin, Helene ;
Garraway, Barry M. ;
Lorent, Vincent .
PHYSICAL REVIEW A, 2006, 74 (05)
[2]   Stability of a Bose-condensed mixture on a bubble trap [J].
Andriati, Alex ;
Brito, Leonardo ;
Tomio, Lauro ;
Gammal, Arnaldo .
PHYSICAL REVIEW A, 2021, 104 (03)
[3]   Observation of Bose-Einstein condensates in an Earth-orbiting research lab [J].
Aveline, David C. ;
Williams, Jason R. ;
Elliott, Ethan R. ;
Dutenhoffer, Chelsea ;
Kellogg, James R. ;
Kohel, James M. ;
Lay, Norman E. ;
Oudrhiri, Kamal ;
Shotwell, Robert F. ;
Yu, Nan ;
Thompson, Robert J. .
NATURE, 2020, 582 (7811) :193-197
[4]   BOSE-EINSTEIN CONDENSATION IN AN EXTERNAL POTENTIAL [J].
BAGNATO, V ;
PRITCHARD, DE ;
KLEPPNER, D .
PHYSICAL REVIEW A, 1987, 35 (10) :4354-4358
[5]   Accurate Determination of Hubble Attenuation and Amplification in Expanding and Contracting Cold-Atom Universes [J].
Banik, S. ;
Galan, M. Gutierrez ;
Sosa-Martinez, H. ;
Anderson, M. ;
Eckel, S. ;
Spielman, I. B. ;
Campbell, G. K. .
PHYSICAL REVIEW LETTERS, 2022, 128 (09)
[6]   Superfluid vortex dynamics on a spherical film [J].
Bereta, Salvio J. ;
Caracanhas, Monica A. ;
Fetter, Alexander L. .
PHYSICAL REVIEW A, 2021, 103 (05)
[7]   Inflationary dynamics and particle production in a toroidal Bose-Einstein condensate [J].
Bhardwaj, Anshuman ;
Vaido, Dzmitry ;
Sheehy, Daniel E. .
PHYSICAL REVIEW A, 2021, 103 (02)
[8]   Nonadiabatic losses from radio-frequency-dressed cold-atom traps: Beyond the Landau-Zener model [J].
Burrows, Kathryn A. ;
Perrin, Helene ;
Garraway, Barry M. .
PHYSICAL REVIEW A, 2017, 96 (02)
[9]   Superfluid vortex dynamics on an ellipsoid and other surfaces of revolution [J].
Caracanhas, Monica A. ;
Massignan, Pietro ;
Fetter, Alexander L. .
PHYSICAL REVIEW A, 2022, 105 (02)
[10]   Feshbach resonances in ultracold gases [J].
Chin, Cheng ;
Grimm, Rudolf ;
Julienne, Paul ;
Tiesinga, Eite .
REVIEWS OF MODERN PHYSICS, 2010, 82 (02) :1225-1286