Numerical Solution of Vector Sturm-Liouville Problems with a Nonlinear Dependence on the Spectral Parameter

被引:3
作者
Gavrikov, Alexander [1 ]
机构
[1] Russian Acad Sci, A Ishlinsky Inst Problems Mech, Prospekt Vernadskogo 101-1, Moscow 119526, Russia
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016) | 2017年 / 1863卷
基金
俄罗斯基础研究基金会;
关键词
NATURAL OSCILLATIONS; SYSTEMS;
D O I
10.1063/1.4992715
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new iterative based on spectral corrections method for solving regular self-adjoint vector Sturm-Liouville problems is presented. It is assumed that symmetric matrix coefficients of the differential equation depend nonlinearly on the spectral parameter. The method has quadratic convergence with respect to a small parameter. The numerical results for test examples are given.
引用
收藏
页数:4
相关论文
共 10 条
[1]   A Modification of One Method for Solving Nonlinear Self-Adjoint Eigenvalue Problems for Hamiltonian Systems of Ordinary Differential Equations [J].
Abramov, A. A. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2011, 51 (01) :35-39
[2]  
Akulenko L. D., 2005, HIGH PRECISION METHO, P260
[3]   The natural oscillations of distributed inhomogeneous systems described by generalized boundary-value problems [J].
Akulenko, LD ;
Nesterov, SV .
PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1999, 63 (04) :617-625
[4]  
[Anonymous], 2007, THESIS GHENT U
[5]  
Chandrasekhar S., 1961, HYDRODYNAMIC HYDROMA, P652
[6]   Modelling and analysis of the natural oscillations of a prismatic elastic beam based on a projection approach [J].
Kostin, G. V. ;
Saurin, V. V. .
PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2011, 75 (06) :700-710
[7]  
Kozlov V. A., 2001, SPECTRAL PROBLEMS AS, P436
[8]  
Marietta M., 1994, ADV COMPUT MATH, V2, P155
[9]  
Pryce J. D., 1993, NUMERICAL SOLUTION S, P336
[10]  
Zettl A., 2005, Sturm-Liouville theory, P328