The algorithm about division and reducts of information system based on discernibility index of attribute

被引:0
作者
Li, J [1 ]
Li, XF
Liu, H
Chen, XY
机构
[1] Jilin Univ, Coll Comp Sci & Tech, Changchun 130025, Peoples R China
[2] JLU, Key Lab Symbol Computat & Knowledge Engn, Changchun, Peoples R China
[3] Changchun Univ Sci & Technol, Changchun, Peoples R China
来源
CONTENT COMPUTING, PROCEEDINGS | 2004年 / 3309卷
关键词
rough set; reduct; discernibility index; data mining;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The effective reduct algorithm is the foundation to use the rough set theory in data mining and knowledge discovery in database. In this paper, we discuss the well-known reduct algorithms, and propose the conception of discernibility index of attribute. We also propose the algorithm about division and reducts of information system based on discernibility index of attribute. We analyze the completeness and validity of the algorithm. The experiments indicate that our algorithm is efficient and practical.
引用
收藏
页码:449 / 456
页数:8
相关论文
共 12 条
  • [1] [Anonymous], B POLISH ACAD SCI
  • [2] [Anonymous], HDB APPL ADV ROUGHT
  • [3] Bazan J. G., 1994, Methodologies for Intelligent Systems. 8th International Symposium, ISMIS '94 Proceedings, P346
  • [4] BJORVAND AT, 1998, ROUGH ENOUGH SYSTEM
  • [5] LEARNING IN RELATIONAL DATABASES - A ROUGH SET APPROACH
    HU, XH
    CERCONE, N
    [J]. COMPUTATIONAL INTELLIGENCE, 1995, 11 (02) : 323 - 338
  • [6] KEYUN H, 2001, THESIS TSINGHUA U
  • [7] KRYSZKIEWICZ M, 1993, P INT WORKSH ROUGH S, P261
  • [8] ROUGH SETS
    PAWLAK, Z
    [J]. INTERNATIONAL JOURNAL OF COMPUTER & INFORMATION SCIENCES, 1982, 11 (05): : 341 - 356
  • [9] Pawlak Z, 1995, COMMUN ACM, V38, P189
  • [10] Starzyk J., 1999, B INT ROUGH SET SOC, V3, P19