Mechanical behavior of strain sensors based on PEDOT:PSS and silver nanoparticles inks deposited on polymer substrate by inkjet printing

被引:89
作者
Borghetti, Michela [1 ]
Serpelloni, Mauro [1 ]
Sardini, Emilio [1 ]
Pandini, Stefano [2 ]
机构
[1] Univ Brescia, Dip Ingn Informaz, Brescia, Italy
[2] Univ Brescia, Dip Ingn Meccan & Ind, Brescia, Italy
关键词
Strain sensor; Inkjet printing; Silver nanoparticles; PEDOT:PSS; Tensile tests; Mechanical behavior; PERFORMANCE; POLYIMIDE; TACTILE; GAUGES;
D O I
10.1016/j.sna.2016.03.021
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, inkjet printing technology has received growing attention as a method to produce low-cost large-area electronics, sensors, and antennas on polymer substrates. This technology relies on printing techniques to deposit electrically functional materials onto polymer substrates to fabricate electronic components or sensing elements. In this paper, we applied an inkjet printed technology for the development and characterization of films on a polymer substrate aiming at giving design considerations for the optimization of strain sensors or printed electronics obtained by inkjet printing. Two inks were tested over a polyimide substrate, a water-based conductive polymer, PEDOT:PSS, and a silver nanoparticles ink. Their sensing capabilities were investigated under tensile conditions and various strain histories (strain ramp; cyclic loading-unloading tests; application of constant strain over prolonged time) aiming at highlighting the correlation between electrical response, applied strain, time and mechanical histories. Furthermore, the mechanical viscoelastic response of the substrate was investigated under similar strain histories interpreting the results at the light of the substrate deformational characteristics and evaluating its influence. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:71 / 80
页数:10
相关论文
共 31 条
[1]   Electrical sintering of nanoparticle structures [J].
Allen, Mark L. ;
Aronniemi, Mikko ;
Mattila, Tomi ;
Alastalo, Ari ;
Ojanpera, Kimmo ;
Suhonen, Mika ;
Seppa, Heikki .
NANOTECHNOLOGY, 2008, 19 (17)
[2]   All-Inkjet Printed Strain Sensors [J].
Ando, Bruno ;
Baglio, Salvatore .
IEEE SENSORS JOURNAL, 2013, 13 (12) :4874-4879
[3]  
Andò B, 2011, IEEE SENSOR, P215
[4]   Graphene-based transparent strain sensor [J].
Bae, Sang-Hoon ;
Lee, Youngbin ;
Sharma, Bhupendra K. ;
Lee, Hak-Joo ;
Kim, Jae-Hyun ;
Ahn, Jong-Hyun .
CARBON, 2013, 51 :236-242
[5]   Highly reproducible printable graphite strain gauges for flexible devices [J].
Bessonov, Alexander ;
Kirikova, Marina ;
Haque, Samiul ;
Gartseev, Ilya ;
Bailey, Marc J. A. .
SENSORS AND ACTUATORS A-PHYSICAL, 2014, 206 :75-80
[6]   Conducting polymer and conducting composite strain sensors on textiles [J].
Calvert, Paul ;
Duggal, Deepak ;
Patra, Prabir ;
Agrawal, Animesh ;
Sawhney, Amit .
MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2008, 484 :657-668
[7]   Mechanical, electrical and electro-mechanical properties of thermoplastic elastomer styrene-butadiene-styrene/multiwall carbon nanotubes composites [J].
Costa, P. ;
Silva, J. ;
Sencadas, V. ;
Simoes, R. ;
Viana, J. C. ;
Lanceros-Mendez, S. .
JOURNAL OF MATERIALS SCIENCE, 2013, 48 (03) :1172-1179
[8]   The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT- PSS) plastic electrodes [J].
Crispin, X. ;
Jakobsson, F. L. E. ;
Crispin, A. ;
Grim, P. C. M. ;
Andersson, P. ;
Volodin, A. ;
van Haesendonck, C. ;
Van der Auweraer, M. ;
Salaneck, W. R. ;
Berggren, M. .
CHEMISTRY OF MATERIALS, 2006, 18 (18) :4354-4360
[9]   Inkjet printing of conductive materials: a review [J].
Cummins, Gerard ;
Desmulliez, Marc P. Y. .
CIRCUIT WORLD, 2012, 38 (04) :193-213
[10]  
DuPont, 2011, DUPONT KAPT HN POL F