Differential and numerically invariant signature curves applied to object recognition

被引:164
作者
Calabi, E [1 ]
Olver, PJ
Shakiban, C
Tannenbaum, A
Haker, S
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19066 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[3] St Thomas Univ, Dept Math, St Paul, MN 55105 USA
[4] Univ Minnesota, Dept Elect Engn, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
object recognition; symmetry group; differential invariant; joint invariant; signature curve; Euclidean group; equi-affine group; numerical approximation; curve shortening flow; snake;
D O I
10.1023/A:1007992709392
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a new paradigm, the differential invariant signature curve or manifold, for the invariant recognition of visual objects. A general theorem of E. Cartan implies that two curves are related by a group transformation if and only if their signature curves are identical. The important examples of the Euclidean and equi-affine groups are discussed in detail. Secondly, we show how a new approach to the numerical approximation of differential invariants, based on suitable combination of joint invariants of the underlying group action, allows one to numerically compute differential invariant signatures in a fully group-invariant manner. Applications to a variety of fundamental issues in vision, including detection of symmetries, visual tracking, and reconstruction of occlusions, are discussed.
引用
收藏
页码:107 / 135
页数:29
相关论文
共 60 条
[11]   SIMILARITY-INVARIANT SIGNATURES FOR PARTIALLY OCCLUDED PLANAR SHAPES [J].
BRUCKSTEIN, AM ;
KATZIR, N ;
LINDENBAUM, M ;
PORAT, M .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1992, 7 (03) :271-285
[12]   Affine geometry, curve flows, and invariant numerical approximations [J].
Calabi, E ;
Olver, PJ ;
Tannenbaum, A .
ADVANCES IN MATHEMATICS, 1996, 124 (01) :154-196
[13]  
Cartan E., 1935, METHODE REPERE MOBIL
[14]   Geodesic active contours [J].
Caselles, V ;
Kimmel, R ;
Sapiro, G .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1997, 22 (01) :61-79
[15]  
CHAM TJ, 1995, GEOMETRIC SALIENCY C
[16]   SYMPLECTIC INTEGRATION OF HAMILTONIAN-SYSTEMS [J].
CHANNELL, PJ ;
SCOVEL, C .
NONLINEARITY, 1990, 3 (02) :231-259
[17]   Image divergence and deformation from closed curves [J].
Cipolla, R ;
Blake, A .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 1997, 16 (01) :77-96
[18]  
DORODNITSYN VA, 1994, CRC HDB LIE GROUP AN, V1, P349
[19]  
FAUGERAS O, 1995, PROCEEDINGS OF EUROPE-CHINA WORKSHOP ON GEOMETRICAL MODELING & INVARIANTS FOR COMPUTER VISION, P17
[20]  
FAUGERAS O, 1993, CR ACAD SCI I-MATH, V317, P565