Chowla's theorem over function fields

被引:1
作者
Hamahata, Yoshinori [1 ]
机构
[1] Okayama Univ Sci, Dept Appl Math, Ridai Cho 1-1, Okayama 7000005, Japan
关键词
Chowla's theorem; L-function; function fields;
D O I
10.1142/S1793042118501026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sarvadaman Chowla proved that if p is an odd prime, then cot(2 pi j/p) (j = 1, . . . , (p - 1)/2) are linearly independent over the field of rational numbers. We establish an analog of this result over function fields. As an application, we prove an analog of the Baker-Birch-Wirsing theorem about the non-vanishing of Dirichlet series with periodic coefficients at s = 1 in the function field setup with a parity condition.
引用
收藏
页码:1689 / 1698
页数:10
相关论文
共 50 条
[31]   Double Dirichlet series over function fields [J].
Fisher, B ;
Friedberg, S .
COMPOSITIO MATHEMATICA, 2004, 140 (03) :613-630
[32]   The Gross conjecture over rational function fields [J].
Ouyang Yi .
Science in China Series A: Mathematics, 2005, 48 :1609-1617
[33]   THE EXTENDED EULERIAN NUMBERS OVER FUNCTION FIELDS [J].
Bayad, Abdelmejid ;
Hajli, Mounir .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2022, 16 (02) :508-523
[34]   On Codes and Learning with Errors over Function Fields [J].
Bombar, Maxime ;
Couvreur, Alain ;
Debris-Alazard, Thomas .
ADVANCES IN CRYPTOLOGY - CRYPTO 2022, PT II, 2022, 13508 :513-540
[35]   The Gross conjecture over rational function fields [J].
Ouyang, Y .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (12) :1609-1617
[36]   New linear codes and algebraic function fields over finite fields [J].
Xing, Chaoping ;
Yeo, Sze Ling .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (12) :4822-4825
[37]   A ruled residue theorem for algebraic function fields of curves of prime degree [J].
Dutta, Arpan .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2023, 227 (12)
[38]   A Torelli-like theorem for higher-dimensional function fields [J].
Topaz, Adam .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2025, 27 (01) :395-432
[39]   A function field analogue of Romanoff's theorem [J].
Kuan, Yen-Liang .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (07) :2161-2173
[40]   Function-Field Analogues of Bang-Zsigmondy's Theorem and Feit's Theorem [J].
Nguyen Ngoc Dong Quan .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2016, 65 (06) :2081-2124