Transaction Costs, Shadow Prices, and Duality in Discrete Time

被引:16
|
作者
Czichowsky, Christoph [1 ]
Muhle-Karbe, Johannes [2 ,3 ]
Schachermayer, Walter [4 ]
机构
[1] Univ London London Sch Econ & Polit Sci, Dept Math, London WC2 2AE, England
[2] ETH, Dept Math, CH-8092 Zurich, Switzerland
[3] Swiss Finance Inst, CH-8006 Zurich, Switzerland
[4] Univ Vienna, Fak Math, A-1090 Vienna, Austria
来源
SIAM JOURNAL ON FINANCIAL MATHEMATICS | 2014年 / 5卷 / 01期
基金
欧洲研究理事会; 瑞士国家科学基金会; 奥地利科学基金会;
关键词
transaction costs; utility maximization; shadow prices; convex duality; ARBITRAGE; MARKETS; THEOREM; PORTFOLIO;
D O I
10.1137/130925864
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
For portfolio choice problems with proportional transaction costs, we discuss whether or not there exists a shadow price, i.e., a least favorable frictionless market extension leading to the same optimal strategy and utility. By means of an explicit counterexample, we show that shadow prices may fail to exist even in seemingly perfectly benign situations, i.e., for a log-investor trading in an arbitrage-free market with bounded prices and arbitrarily small transaction costs. We also clarify the connection between shadow prices and duality theory. Whereas dual minimizers need not lead to shadow prices in the above "global" sense, we show that they always correspond to a "local" version.
引用
收藏
页码:258 / 277
页数:20
相关论文
共 50 条