Transaction Costs, Shadow Prices, and Duality in Discrete Time

被引:16
|
作者
Czichowsky, Christoph [1 ]
Muhle-Karbe, Johannes [2 ,3 ]
Schachermayer, Walter [4 ]
机构
[1] Univ London London Sch Econ & Polit Sci, Dept Math, London WC2 2AE, England
[2] ETH, Dept Math, CH-8092 Zurich, Switzerland
[3] Swiss Finance Inst, CH-8006 Zurich, Switzerland
[4] Univ Vienna, Fak Math, A-1090 Vienna, Austria
来源
SIAM JOURNAL ON FINANCIAL MATHEMATICS | 2014年 / 5卷 / 01期
基金
欧洲研究理事会; 瑞士国家科学基金会; 奥地利科学基金会;
关键词
transaction costs; utility maximization; shadow prices; convex duality; ARBITRAGE; MARKETS; THEOREM; PORTFOLIO;
D O I
10.1137/130925864
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
For portfolio choice problems with proportional transaction costs, we discuss whether or not there exists a shadow price, i.e., a least favorable frictionless market extension leading to the same optimal strategy and utility. By means of an explicit counterexample, we show that shadow prices may fail to exist even in seemingly perfectly benign situations, i.e., for a log-investor trading in an arbitrage-free market with bounded prices and arbitrarily small transaction costs. We also clarify the connection between shadow prices and duality theory. Whereas dual minimizers need not lead to shadow prices in the above "global" sense, we show that they always correspond to a "local" version.
引用
收藏
页码:258 / 277
页数:20
相关论文
共 50 条
  • [1] Optimal investment with random endowments and transaction costs: duality theory and shadow prices
    Bayraktar, Erhan
    Yu, Xiang
    MATHEMATICS AND FINANCIAL ECONOMICS, 2019, 13 (02) : 253 - 286
  • [2] Optimal investment with random endowments and transaction costs: duality theory and shadow prices
    Erhan Bayraktar
    Xiang Yu
    Mathematics and Financial Economics, 2019, 13 : 253 - 286
  • [3] Shadow prices, fractional Brownian motion, and portfolio optimisation under transaction costs
    Czichowsky, Christoph
    Peyre, Remi
    Schachermayer, Walter
    Yang, Junjian
    FINANCE AND STOCHASTICS, 2018, 22 (01) : 161 - 180
  • [4] ON USING SHADOW PRICES IN PORTFOLIO OPTIMIZATION WITH TRANSACTION COSTS
    Kallsen, J.
    Muhle-Karbe, J.
    ANNALS OF APPLIED PROBABILITY, 2010, 20 (04) : 1341 - 1358
  • [5] SHADOW PRICES FOR CONTINUOUS PROCESSES
    Czichowsky, Christoph
    Schachermayer, Walter
    Yang, Junjian
    MATHEMATICAL FINANCE, 2017, 27 (03) : 623 - 658
  • [6] On the existence of shadow prices
    Benedetti, Giuseppe
    Campi, Luciano
    Kallsen, Jan
    Muhle-Karbe, Johannes
    FINANCE AND STOCHASTICS, 2013, 17 (04) : 801 - 818
  • [7] DUALITY THEORY FOR PORTFOLIO OPTIMISATION UNDER TRANSACTION COSTS
    Czichowsky, Christoph
    Schachermayer, Walter
    ANNALS OF APPLIED PROBABILITY, 2016, 26 (03) : 1888 - 1941
  • [8] UTILITY MAXIMIZATION IN A BINOMIAL MODEL WITH TRANSACTION COSTS: A DUALITY APPROACH BASED ON THE SHADOW PRICE PROCESS
    Bayer, Christian
    Veliyev, Bezirgen
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2014, 17 (04)
  • [9] Shadow prices, fractional Brownian motion, and portfolio optimisation under transaction costs
    Christoph Czichowsky
    Rémi Peyre
    Walter Schachermayer
    Junjian Yang
    Finance and Stochastics, 2018, 22 : 161 - 180
  • [10] Convex Duality with Transaction Costs
    Dolinsky, Yan
    Soner, H. Mete
    MATHEMATICS OF OPERATIONS RESEARCH, 2017, 42 (02) : 448 - 471