Early lysosomal maturation deficits in microglia triggers enhanced lysosomal activity in other brain cells of progranulin knockout mice

被引:62
作者
Goetzl, Julia K. [1 ]
Colombo, Alessio-Vittorio [2 ]
Fellerer, Katrin [1 ]
Reifschneider, Anika [1 ]
Werner, Georg [1 ]
Tahirovic, Sabina [2 ]
Haass, Christian [1 ,2 ,3 ]
Capell, Anja [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Fac Med, Biomed Ctr BMC, Chair Metab Biochem, D-81377 Munich, Germany
[2] German Ctr Neurodegenerat Dis DZNE Munich, D-81377 Munich, Germany
[3] Munich Cluster Syst Neurol SyNergy, D-81377 Munich, Germany
来源
MOLECULAR NEURODEGENERATION | 2018年 / 13卷
关键词
Frontotemporal lobar degeneration; Microglia; Neurodegeneration; Progranulin; Lysosome; Cathepsin; FRONTOTEMPORAL LOBAR DEGENERATION; NEURONAL CEROID-LIPOFUSCINOSIS; AMYLOID PRECURSOR PROTEIN; CYSTEINE PROTEASES; GROWTH-FACTOR; EPITHELIN PRECURSOR; ACTIVATED MICROGLIA; ALZHEIMERS-DISEASE; HOST-DEFENSE; CANCER-CELLS;
D O I
10.1186/s13024-018-0281-5
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Heterozygous loss-of-function mutations in the progranulin gene (GRN) lead to frontotemporal lobar degeneration (FTLD) while the complete loss of progranulin (PGRN) function results in neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disease. Thus the growth factor-like protein PGRN may play an important role in lysosomal degradation. In line with a potential lysosomal function, PGRN is partially localized and processed in lysosomes. In the central nervous system (CNS), PGRN is like other lysosomal proteins highly expressed in microglia, further supporting an important role in protein degradation. We have previously reported that cathepsin (Cat) D is elevated in GRN-associated FTLD patients and Grn knockout mice. However, the primary mechanism that causes impaired protein degradation and elevated CatD levels upon PGRN deficiency in NCL and FTLD remains unclear. Methods: mRNA expression analysis of selected lysosomal hydrolases, lysosomal membrane proteins and autophagy-related genes was performed by NanoString nCounter panel. Protein expression, maturation and in vitro activity of Cat D, B and L in mouse embryonic fibroblasts (MEF) and brains of Grn knockout mice were investigated. To selectively characterize microglial and non-microglial brain cells, an acutely isolated microglia fraction using MACS microbeads (Miltenyi Biotec) conjugated with CD11b antibody and a microglia-depleted fraction were analyzed for protein expression and maturation of selected cathepsins. . Results: We demonstrate that loss of PGRN results in enhanced expression, maturation and in vitro activity of Cat D, B and L in mouse embryonic fibroblasts and brain extracts of aged Grn knockout mice. Consistent with an overall enhanced expression and activity of lysosomal proteases in brain of Grn knockout mice, we observed an age-dependent transcriptional upregulation of certain lysosomal proteases. Thus, lysosomal dysfunction is not reflected by transcriptional downregulation of lysosomal proteases but rather by the upregulation of certain lysosomal proteases in an age-dependent manner. Surprisingly, cell specific analyses identified early lysosomal deficits in microglia before enhanced cathepsin levels could be detected in other brain cells, suggesting different functional consequences on lysosomal homeostasis in microglia and other brain cells upon lack of PGRN. Conclusions: The present study uncovers early and selective lysosomal dysfunctions in Grn knockout microglia/macrophages. Dysregulated lysosomal homeostasis in microglia might trigger compensatory lysosomal changes in other brain cells.
引用
收藏
页数:16
相关论文
共 71 条
[1]   Accelerated Lipofuscinosis and Ubiquitination in Granulin Knockout Mice Suggest a Role for Progranulin in Successful Aging [J].
Ahmed, Zeshan ;
Sheng, Hong ;
Xu, Ya-fei ;
Lin, Wen-Lang ;
Innes, Amy E. ;
Gass, Jennifer ;
Yu, Xin ;
Hou, Harold ;
Chiba, Shuichi ;
Yamanouchi, Keitaro ;
Leissring, Malcolm ;
Petrucelli, Leonard ;
Nishihara, Masugi ;
Hutton, Michael L. ;
McGowan, Eileen ;
Dickson, Dennis W. ;
Lewis, Jada .
AMERICAN JOURNAL OF PATHOLOGY, 2010, 177 (01) :311-324
[2]   Portuguese family with the co-occurrence of frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis phenotypes due to progranulin gene mutation [J].
Almeida, Maria R. ;
Macario, Maria C. ;
Ramos, Lina ;
Baldeiras, Ines ;
Ribeiro, Maria H. ;
Santana, Isabel .
NEUROBIOLOGY OF AGING, 2016, 41 :200.e1-200.e5
[3]   Progranulin Gene Therapy Improves Lysosomal Dysfunction and Microglial Pathology Associated with Frontotemporal Dementia and Neuronal Ceroid Lipofuscinosis [J].
Arrant, Andrew E. ;
Onyilo, Vincent C. ;
Unger, Daniel E. ;
Roberson, Erik D. .
JOURNAL OF NEUROSCIENCE, 2018, 38 (09) :2341-2358
[4]   ADAMTS-7, a Direct Target of PTHrP, Adversely Regulates Endochondral Bone Growth by Associating with and Inactivating GEP Growth Factor [J].
Bai, Xiao-Hui ;
Wang, Da-Wei ;
Kong, Li ;
Zhang, Yan ;
Luan, Yi ;
Kobayashi, Tatsuya ;
Kronenberg, Henry M. ;
Yu, Xiu-Ping ;
Liu, Chuan-ju .
MOLECULAR AND CELLULAR BIOLOGY, 2009, 29 (15) :4201-4219
[5]   Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17 [J].
Baker, Matt ;
Mackenzie, Ian R. ;
Pickering-Brown, Stuart M. ;
Gass, Jennifer ;
Rademakers, Rosa ;
Lindholm, Caroline ;
Snowden, Julie ;
Adamson, Jennifer ;
Sadovnick, A. Dessa ;
Rollinson, Sara ;
Cannon, Ashley ;
Dwosh, Emily ;
Neary, David ;
Melquist, Stacey ;
Richardson, Anna ;
Dickson, Dennis ;
Berger, Zdenek ;
Eriksen, Jason ;
Robinson, Todd ;
Zehr, Cynthia ;
Dickey, Chad A. ;
Crook, Richard ;
McGowan, Eileen ;
Mann, David ;
Boeve, Bradley ;
Feldman, Howard ;
Hutton, Mike .
NATURE, 2006, 442 (7105) :916-919
[6]   Progranulin functions as a cathepsin D chaperone to stimulate axonal outgrowth in vivo [J].
Beel, Sander ;
Moisse, Matthieu ;
Damme, Markus ;
De Muynck, Louis ;
Robberecht, Wim ;
Van den Bosch, Ludo ;
Saftig, Paul ;
Van Damme, Philip .
HUMAN MOLECULAR GENETICS, 2017, 26 (15) :2850-2863
[7]   Transcriptional gene network inference from a massive dataset elucidates transcriptome organization and gene function [J].
Belcastro, Vincenzo ;
Siciliano, Velia ;
Gregoretti, Francesco ;
Mithbaokar, Pratibha ;
Dharmalingam, Gopuraja ;
Berlingieri, Stefania ;
Iorio, Francesco ;
Oliva, Gennaro ;
Polishchuck, Roman ;
Brunetti-Pierri, Nicola ;
di Bernardo, Diego .
NUCLEIC ACIDS RESEARCH, 2011, 39 (20) :8677-8688
[8]   ALIGNMENT PHYLOGENY OF THE PAPAIN SUPERFAMILY OF CYSTEINE PROTEASES [J].
BERTI, PJ ;
STORER, AC .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 246 (02) :273-283
[9]   Pharmacoproteomics of a metalloproteinase hydroxamate inhibitor in breast cancer cells: Dynamics of membrane type 1 matrix metalloproteinase-mediated membrane protein shedding [J].
Butler, Georgina S. ;
Dean, Richard A. ;
Tam, Eric M. ;
Overall, Christopher M. .
MOLECULAR AND CELLULAR BIOLOGY, 2008, 28 (15) :4896-4914
[10]   Sequence comparison, molecular modeling, and network analysis predict structural diversity in cysteine proteases from the Cape sundew, Drosera capensis [J].
Butts, Carter T. ;
Zhang, Xuhong ;
Kelly, John E. ;
Roskamp, Kyle W. ;
Unhelkar, Megha H. ;
Freites, J. Alfredo ;
Tahir, Seemal ;
Martin, Rachel W. .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2016, 14 :271-282