Distributed Algorithm Design for Resource Allocation Problems of Second-Order Multiagent Systems Over Weight-Balanced Digraphs

被引:52
作者
Deng, Zhenhua [1 ]
机构
[1] Cent South Univ, Sch Automat, Changsha 410075, Peoples R China
来源
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS | 2021年 / 51卷 / 06期
基金
中国国家自然科学基金;
关键词
Resource management; Distributed algorithms; Heuristic algorithms; Optimization; Multi-agent systems; Convergence; Communication networks; Distributed optimization; multiagent systems; projected dynamical systems; resource allocation; second-order systems; weight-balanced digraphs; GRADIENT-METHOD; OPTIMIZATION; NETWORK; COORDINATION; CONSENSUS;
D O I
10.1109/TSMC.2019.2930672
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies two distributed resource allocation problems of second-order systems over weight-balanced communication networks. In the first problem, the decisions of agents are coupled by network resource constraints, and in the second problem, the decisions of agents are constrained by local constraints and network resource constraints. Compared with many existing resource allocation problems, the formulation involves the dynamics of agents. The second-order dynamics of agents induce the difficult in algorithm design and analysis, since the decisions of agents could not be directly decided by their control inputs. In order to optimally allocate the network resource, two distributed algorithms are designed via state feedback and gradient descent for the two problems, respectively. Besides, the convergence of the two algorithms are analyzed. By the two algorithms, the second-order agents converge to the optimal allocation of the two problems, respectively. Finally, two examples about economic dispatch problems verify the two algorithms.
引用
收藏
页码:3512 / 3521
页数:10
相关论文
共 47 条
[1]  
[Anonymous], IEEE T CYBERN
[2]  
[Anonymous], IEEE T SYST MAN CYBE
[3]  
[Anonymous], IEEE T SYST MAN CYBE
[4]  
Aubin J., 1984, Differential inclusions, set-valued maps and viability theory
[5]   An O(1/k) Gradient Method for Network Resource Allocation Problems [J].
Beck, Amir ;
Nedic, Angelia ;
Ozdaglar, Asuman ;
Teboulle, Marc .
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2014, 1 (01) :64-73
[6]   On the equivalence between complementarity systems, projected systems and differential inclusions [J].
Brogliato, B ;
Daniilidis, A ;
Lemaréchal, C ;
Acary, V .
SYSTEMS & CONTROL LETTERS, 2006, 55 (01) :45-51
[7]   Distributed Generator Coordination for Initialization and Anytime Optimization in Economic Dispatch [J].
Cherukuri, Ashish ;
Cortes, Jorge .
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2015, 2 (03) :226-237
[8]   Existence of solutions to projected differential equations in Hilbert spaces [J].
Cojocaru, MG ;
Jonker, LB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (01) :183-193
[9]  
Deng Z., IEEE T CYBERN
[10]   Distributed Continuous-Time Algorithms for Resource Allocation Problems Over Weight-Balanced Digraphs [J].
Deng, Zhenhua ;
Liang, Shu ;
Hong, Yiguang .
IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (11) :3116-3125