Mathematical modeling of direct formate fuel cells

被引:30
作者
An, L. [1 ]
Chen, R. [2 ,3 ]
机构
[1] Hong Kong Polytech Univ, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China
[2] Chongqing Univ, Minist Educ, Key Lab Lowgrade Energy Utilizat Technol & Syst, Chongqing 400030, Peoples R China
[3] Chongqing Univ, Inst Engn Thermophys, Chongqing 400030, Peoples R China
关键词
Fuel cell; Direct formate fuel cell; Mathematical modeling; Mass transport; Polarization; ANION-EXCHANGE MEMBRANE; SUSTAINABLE ENERGY-PRODUCTION; HYDROGEN-PEROXIDE; MASS-TRANSPORT; PERFORMANCE; OXIDATION; ELECTRICITY; CATHODE;
D O I
10.1016/j.applthermaleng.2017.06.020
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this work, we develop a one-dimensional mathematical model for direct formate fuel cells (DFFC), which incorporates transport and electrochemical processes. The present model is validated against literature experimental results and it shows good agreement. In addition, we also investigate effects of operating and structural parameters on the cell voltage. Results exhibit that the cell voltage is increased with the reactant concentration, including formate, hydroxide ions, and oxygen, which originates from the reduced activation polarization and concentration polarization. Moreover, it is also shown that increasing the exchange current density much reduces electrode overpotentials and thus upgrades the cell performance. The model is further used to examine how the anode diffusion layer and the membrane affect the cell performance. It is found that the cell performance is upgraded with increasing the porosity of the anode diffusion layer and decreasing the thickness of the anode diffusion layer or membrane. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:232 / 240
页数:9
相关论文
共 44 条
[1]   Characterization and use of anionic membranes for alkaline fuel cells [J].
Agel, E ;
Bouet, J ;
Fauvarque, JF .
JOURNAL OF POWER SOURCES, 2001, 101 (02) :267-274
[2]   Transport phenomena in alkaline direct ethanol fuel cells for sustainable energy production [J].
An, L. ;
Zhao, T. S. .
JOURNAL OF POWER SOURCES, 2017, 341 :199-211
[3]   Recent progress in alkaline direct ethylene glycol fuel cells for sustainable energy production [J].
An, L. ;
Chen, R. .
JOURNAL OF POWER SOURCES, 2016, 329 :484-501
[4]   Direct formate fuel cells: A review [J].
An, L. ;
Chen, R. .
JOURNAL OF POWER SOURCES, 2016, 320 :127-139
[5]   Carbon-neutral sustainable energy technology: Direct ethanol fuel cells [J].
An, L. ;
Zhao, T. S. ;
Li, Y. S. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 50 :1462-1468
[6]   A high-performance ethanol-hydrogen peroxide fuel cell [J].
An, L. ;
Zhao, T. S. ;
Zhou, X. L. ;
Wei, L. ;
Yan, X. H. .
RSC ADVANCES, 2014, 4 (110) :65031-65034
[7]   Modeling of the mixed potential in hydrogen peroxide-based fuel cells [J].
An, L. ;
Zhao, T. S. ;
Chai, Z. H. ;
Zeng, L. ;
Tan, P. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (14) :7407-7416
[8]   Performance of an alkaline direct ethanol fuel cell with hydrogen peroxide as oxidant [J].
An, L. ;
Zhao, T. S. ;
Zeng, L. ;
Yan, X. H. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (05) :2320-2324
[9]   Mathematical modeling of alkaline direct ethanol fuel cells [J].
An, L. ;
Chai, Z. H. ;
Zeng, L. ;
Tan, P. ;
Zhao, T. S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (32) :14067-14075
[10]   An alkaline direct ethylene glycol fuel cell with an alkali-doped polybenzimidazole membrane [J].
An, L. ;
Zeng, L. ;
Zhao, T. S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (25) :10602-10606