Directed Atom-by-Atom Assembly of Dopants in Silicon

被引:55
作者
Hudak, Bethany M. [1 ,2 ]
Song, Jiaming [1 ,6 ]
Sims, Hunter [1 ,3 ]
Troparevsky, M. Claudia [1 ]
Humble, Travis S. [4 ]
Pantelides, Sokrates T. [1 ,3 ]
Snijders, Paul C. [1 ,5 ]
Lupini, Andrew R. [1 ,2 ]
机构
[1] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Inst Funct Imaging Mat, Oak Ridge, TN 37831 USA
[3] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[4] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA
[5] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[6] Northwest Univ, Sch Phys, Xian 710127, Shaanxi, Peoples R China
关键词
atomic positioning single-atom manipulation; scanning transmission electron microscopy (STEM); dopants; bismuth in silicon; quantum materials; quantum computing; AUGMENTED-WAVE METHOD; RADIATION-DAMAGE; SINGLE ATOMS; TRANSISTORS; SPIN; SEMICONDUCTORS; MANIPULATION; GERMANIUM; DIFFUSION; IMPURITY;
D O I
10.1021/acsnano.8b02001
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The ability to controllably position single atoms inside materials is key for the ultimate fabrication of devices with functionalities governed by atomic-scale properties. Single bismuth dopant atoms in silicon provide an ideal case study in view of proposals for single-dopant quantum bits. However, bismuth is the least soluble pnictogen in silicon, meaning that the dopant atoms tend to migrate out of position during sample growth. Here, we demonstrate epitaxial growth of thin silicon films doped with bismuth. We use atomic-resolution aberration-corrected imaging to view the as-grown dopant distribution and then to controllably position single dopants inside the film. Atomic-scale quantum mechanical calculations corroborate the experimental findings. These results indicate that the scanning transmission electron. microscope is of particular interest for assembling functional materials atom-by-atom because it offers both real-time monitoring and atom manipulation. We envision electron-beam manipulation of atoms inside materials as an achievable route to controllable assembly of structures of individual dopants.
引用
收藏
页码:5873 / 5879
页数:7
相关论文
共 51 条
[1]   Modelling the inelastic scattering of fast electrons [J].
Allen, L. J. ;
D'Alfonso, A. J. ;
Findlay, S. D. .
ULTRAMICROSCOPY, 2015, 151 :11-22
[2]   Lattice-resolution contrast from a focused coherent electron probe. Part I [J].
Allen, LJ ;
Findlay, SD ;
Oxley, MP ;
Rossouw, CJ .
ULTRAMICROSCOPY, 2003, 96 (01) :47-63
[3]  
[Anonymous], 2008, Springer Ser. Opt. Sci.
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]  
Custance O, 2009, NAT NANOTECHNOL, V4, P803, DOI [10.1038/NNANO.2009.347, 10.1038/nnano.2009.347]
[6]   Mechanisms of radiation damage in beam-sensitive specimens, for TEM accelerating voltages between 10 and 300 kV [J].
Egerton, R. F. .
MICROSCOPY RESEARCH AND TECHNIQUE, 2012, 75 (11) :1550-1556
[7]   Radiation damage in the TEM and SEM [J].
Egerton, RF ;
Li, P ;
Malac, M .
MICRON, 2004, 35 (06) :399-409
[8]   POSITIONING SINGLE ATOMS WITH A SCANNING TUNNELING MICROSCOPE [J].
EIGLER, DM ;
SCHWEIZER, EK .
NATURE, 1990, 344 (6266) :524-526
[9]   POINT-DEFECTS AND DOPANT DIFFUSION IN SILICON [J].
FAHEY, PM ;
GRIFFIN, PB ;
PLUMMER, JD .
REVIEWS OF MODERN PHYSICS, 1989, 61 (02) :289-384
[10]  
Fair R. B., 1981, MAT PROCESSING THEOR, V2