A sequential empirical CLT for multiple mixing processes with application to B-geometrically ergodic Markov chains

被引:3
作者
Dehling, Herold [1 ]
Durieu, Olivier [2 ]
Tusche, Marco [1 ,2 ]
机构
[1] Ruhr Univ Bochum, Fak Math, Bochum, Germany
[2] Univ Tours, Federat Denis Poisson FR CNRS 2964, Lab Math & Phys Theor, UMR CNRS 7350, F-37041 Tours, France
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2014年 / 19卷
关键词
Multivariate Sequential Empirical Processes; Limit Theorems; Multiple Mixing; Spectral Gap; Dynamical Systems; Markov chain; Change-Point Problems; CENTRAL-LIMIT-THEOREM; DEPENDENT SEQUENCES; INVARIANT-MEASURES; ITERATED MAPS; APPROXIMATION; CONTRACT;
D O I
10.1214/EJP.v19-3216
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the convergence in distribution of sequential empirical processes of dependent data indexed by a class of functions F. Our technique is suitable for processes that satisfy a multiple mixing condition on a space of functions which differs from the class F. This situation occurs in the case of data arising from dynamical systems or Markov chains, for which the Perron-Frobenius or Markov operator, respectively, has a spectral gap on a restricted space. We provide applications to iterative Lipschitz models that contract on average.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 45 条
  • [1] [Anonymous], 1953, PACIFIC J MATH
  • [2] BARNSLEY MF, 1988, ANN I H POINCARE-PR, V24, P367
  • [3] A NEW CLASS OF MARKOV-PROCESSES FOR IMAGE ENCODING
    BARNSLEY, MF
    ELTON, JH
    [J]. ADVANCES IN APPLIED PROBABILITY, 1988, 20 (01) : 14 - 32
  • [4] ALMOST SURE INVARIANCE PRINCIPLE FOR EMPIRICAL DISTRIBUTION FUNCTION OF MIXING RANDOM-VARIABLES
    BERKES, I
    PHILIPP, W
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 41 (02): : 115 - 137
  • [5] Asymptotic results for the empirical process of stationary sequences
    Berkes, Istvan
    Hoermann, Siegfried
    Schauer, Johannes
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (04) : 1298 - 1324
  • [6] Billingsley Patrick, 1999, Convergence of probability measures, V2nd
  • [7] Ciesielski Zbigniew, 1962, P AM MATH SOC, V13, P596
  • [8] Asymptotic distribution of tests for expanding maps of the interval
    Collet, P
    Martinez, S
    Schmitt, B
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 : 707 - 722
  • [9] CSORGO M, 1975, Z WAHRSCHEINLICHKEIT, V31, P261, DOI 10.1007/BF00532866
  • [10] Csorgo M., 1981, PROBABILITY MATH STA