Hochschild cohomology and Atiyah classes

被引:56
作者
Calaque, Damien [1 ]
Van den Bergh, Michel [2 ]
机构
[1] Univ Lyon 1, CNRS, UMR 5208, Inst Camille Jordan, F-69622 Villeurbanne, France
[2] Univ Hasselt, Dept WNI, B-3590 Diepenbeek, Belgium
关键词
Deformation quantization; Atiyah classes; GLOBAL DEFORMATION QUANTIZATION; COISOTROPIC SUBMANIFOLDS; POISSON MANIFOLDS; FORMALITY THEOREMS; LIE ALGEBROIDS; GEOMETRY;
D O I
10.1016/j.aim.2010.01.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that on a smooth algebraic variety the HKR-morphism twisted by the square root of the Todd genus gives an isomorphism between the sheaf of poly-vector fields and the sheaf of poly-differential operators, both considered as derived Gerstenhaber algebras. In particular we obtain an isomorphism between Hochschild cohomology and the cohomology of poly-vector fields which is compatible with the Lie bracket and the cupproduct. The latter compatibility is an unpublished result by Kontsevich. Our proof is set in the framework of Lie algebroids and so applies without modification in much more general settings as well. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1839 / 1889
页数:51
相关论文
共 45 条
[1]  
[Anonymous], ARXIVMATHQA9803025
[2]   Choice of signs for the Kontsevich formality [J].
Arnal, D ;
Manchon, D ;
Masmoudi, M .
PACIFIC JOURNAL OF MATHEMATICS, 2002, 203 (01) :23-66
[3]  
ARTIN M., 1972, Theorie des topos et cohomologie etale des schemas, V305
[4]   FEDOSOV QUANTIZATION IN ALGEBRAIC CONTEXT [J].
Bezrukavnikov, R. ;
Kaledin, D. .
MOSCOW MATHEMATICAL JOURNAL, 2004, 4 (03) :559-592
[5]  
BEZRUKAVNIKOV R, 2004, MOSC MATH J, V4, P782
[6]   Formality for Lie algebroids [J].
Calaque, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 257 (03) :563-578
[7]  
CALAQUE D, LECT DUFL IS LIE ALG
[8]  
CALAQUE D, ARXIV07104510
[9]  
CALAQUE D, ARXIV07071978
[10]   Formality theorems for Hochschild chains in the Lie algebroid setting [J].
Calaque, Damien ;
Dogushev, Vasiliy ;
Halbout, Gilles .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 612 :81-127