On the Use of Fractional-Order Quadrature-Based Moment Closures for Predicting Soot Formation in Laminar Flames

被引:5
作者
Xing, J. Y. [1 ]
Groth, C. P. T. [1 ]
Hu, J. T. C. [2 ]
机构
[1] Univ Toronto, Inst Aerosp Studies, Toronto, ON, Canada
[2] Pratt & Whitney Canada, Mississauga, ON, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
Soot; soot modeling; method of moments; QBMM; CQMOM; CQMOM-Radau; ethanol; laminar diffusion flames; POPULATION-BALANCE; DIFFUSION FLAMES; AEROSOL DYNAMICS; PREMIXED FLAMES; SIMULATION; CHEMISTRY; GAS; IMPLEMENTATION; PRESSURES; CARBON;
D O I
10.1080/00102202.2019.1678375
中图分类号
O414.1 [热力学];
学科分类号
摘要
The accurate numerical prediction of soot formation in practical combustion devices remains a challenge. Several new quadrature-based moment closures based on fractional-order moments of soot particle volume are proposed for the prediction of soot formation in laminar diffusion flames at atmospheric and elevated pressures. Both univariate Quadrature Method of Moments (QMOM) models based on a classical particle volume formulation and bivariate Conditional Quadrature Method of Moments (CQMOM) models based on a new particle volume/primary particle number formulation are proposed. The soot models include detailed gas-phase chemistry along with nucleation, surface growth, oxidation, and coalescence/coagulation soot chemistry source terms. Initial comparisons to predictions of a sectional method for space homogeneous simulations illustrate well the improved predictions of soot number density and volume fraction are provided by the fractional-order moment closures compared to integer-order moment approaches. Furthermore, additional comparisons of soot prediction of methane/ethanol laminar diffusion flames at elevated pressures indicate that the proposed bivariate CQMOM, with a specified soot inception size, offer significantly improved results when compared to the other variants and available experimental data.
引用
收藏
页码:22 / 44
页数:23
相关论文
共 45 条
[1]  
Akih-Kumgeh B., 2013, COMP DETAILED REDUCE
[2]   Kinetic modeling of soot formation with detailed chemistry and physics:: Laminar premixed flames of C2 hydrocarbons [J].
Appel, J ;
Bockhorn, H ;
Frenklach, M .
COMBUSTION AND FLAME, 2000, 121 (1-2) :122-136
[3]   A stochastic approach to calculate the particle size distribution function of soot particles in laminar premixed flames [J].
Balthasar, A ;
Kraft, M .
COMBUSTION AND FLAME, 2003, 133 (03) :289-298
[4]   Analysis of the impact of agglomeration and surface chemistry models on soot formation and oxidation [J].
Bhatt, J. S. ;
Lindstedt, R. P. .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2009, 32 :713-720
[5]   Soot predictions in premixed and non-premixed laminar flames using a sectional approach for PAHs and soot [J].
Blacha, Thomas ;
Di Domenico, Massimiliano ;
Gerlinger, Peter ;
Aigner, Manfred .
COMBUSTION AND FLAME, 2012, 159 (01) :181-193
[6]   Analyzing the effects of temperature on soot formation with a joint volume-surface-hydrogen model [J].
Blanquart, G. ;
Pitsch, H. .
COMBUSTION AND FLAME, 2009, 156 (08) :1614-1626
[7]   Multidimensional population balance model for the simulation of turbulent gas-liquid systems in stirred tank reactors [J].
Buffo, A. ;
Vanni, M. ;
Marchisio, D. L. .
CHEMICAL ENGINEERING SCIENCE, 2012, 70 :31-44
[8]   Coupling a stochastic soot population balance to gas-phase chemistry using operator splitting [J].
Celnik, Matthew ;
Patterson, Robert ;
Kraft, Markus ;
Wagner, Wolfgang .
COMBUSTION AND FLAME, 2007, 148 (03) :158-176
[9]  
Chalons C., 2010, P SUMM PROGR 2010 CT, P347
[10]   Numerical and experimental study of soot formation in laminar diffusion flames burning simulated biogas fuels at elevated pressures [J].
Charest, Marc R. J. ;
Guelder, Oemer L. ;
Groth, Clinton P. T. .
COMBUSTION AND FLAME, 2014, 161 (10) :2678-2691