Baseline Traffic Modeling for Anomalous Traffic Detection on Network Transit Points

被引:0
作者
Cho, Yoohee [1 ]
Kang, Koohong [2 ]
Kim, Ikkyun [3 ]
Jeong, Kitae [1 ]
机构
[1] Network Lab KT, 463-1 Jeonmin Dong, Taejon, South Korea
[2] Seowon Univ, Dept Informat & Commun Engn, Chongju 361742, South Korea
[3] ETRI, Informat Secur Res Div, Daejeon 305700, South Korea
来源
MANAGEMENT ENABLING THE FUTURE INTERNET FOR CHANGING BUSINESS AND NEW COMPUTING SERVICES, PROCEEDINGS | 2009年 / 5787卷
关键词
Intrusion Detection; Anomaly; DDoS attack;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Remarkable concerns have been made in recent years towards detecting the network traffic anomalies in order to protect our networks from the persistent threats of DDos and unknown attacks. As a preprocess for many state-of-the-art attack detection technologies, baseline traffic modeling is a prerequisite step to discriminate anomalous flow from normal traffic. In this paper, we analyze the traffic from various network transit points on ISP backbone network and present a baseline traffic model using simple linear regression for the imported Netflow data; bits per second and flows per second. Our preliminary explorations indicate that the proposed modeling is very effective to recognize anomalous traffic on the real networks.
引用
收藏
页码:385 / +
页数:2
相关论文
共 10 条
[1]  
[Anonymous], 1995, SRICSL9507
[2]  
Barford P, 2001, IMW 2001: PROCEEDINGS OF THE FIRST ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP, P69
[3]  
Brutlag JD, 2000, USENIX ASSOCIATION PROCEEDINGS OF THE FOURTEENTH SYSTEMS ADMINISTRATION CONFERENCE (LISA XIV), P139
[4]  
FOSTER JC, 2005, IDS SIGNATURE VERSUS
[5]   Characteristic analysis of internet traffic from the perspective of flows [J].
Kim, Myung-Sup ;
Won, Young J. ;
Hong, James W. .
COMPUTER COMMUNICATIONS, 2006, 29 (10) :1639-1652
[6]  
Mahoney M. V., 2003, P 2003 ACM S APPL CO, p346~350, DOI [10.1145/952532.952601, DOI 10.1145/952532.952601]
[7]  
Montgomery D. C., 1992, INTRO LINEAR REGRESS
[8]  
Sperotto A, 2008, LECT NOTES COMPUT SC, V5275, P15, DOI 10.1007/978-3-540-87357-0_2
[9]  
*SPSS, SPSS MAN
[10]   Anomaly detection in IP networks [J].
Thottan, M ;
Ji, C .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (08) :2191-2204